Analytical Fragility Curves for Ordinary Highway Bridges in Turkey

2011 ◽  
Vol 27 (4) ◽  
pp. 971-996 ◽  
Author(s):  
Özgür Avşar ◽  
Ahmet Yakut ◽  
Alp Caner

This study focuses on the development of analytical fragility curves for the ordinary highway bridges constructed after the 1990s. Four major bridge classes were employed based on skew angle, number of columns per bent, and span number (only multispan bridges). Nonlinear response-history analyses (NRHA) were conducted for each bridge sample using a detailed 3-D analytical model subjected to earthquake ground motions of varying seismic intensities. A component-based approach that uses several engineering demand parameters was employed to determine the seismic response of critical bridge components. Corresponding damage limit states were defined either in terms of member capacities or excessive bearing displacements. Lognormal fragility curves were obtained by curve fitting the point estimates of the probability of exceeding each specified damage limit state for each major bridge class. Bridges with larger skew angles or single-column bents were found to be the most seismically vulnerable.

2013 ◽  
Vol 13 (06) ◽  
pp. 1350013 ◽  
Author(s):  
AHMED ABDEL-MOHTI ◽  
GOKHAN PEKCAN

In this study, the seismic vulnerability of post-tensioned reinforced concrete box-girder highway bridges with moderate-to-large skew angles to various levels of ground motion intensity is investigated. The fragility curves are generated by performing incremental nonlinear dynamic analysis (IDA) on the bridges of skew angles of 0, 30, and 60°s. A total of 45 ground motion pairs are considered to develop the fragility curves. The damage states are presented and quantified based on the column rotational ductility and superstructure displacements at the abutments. Furthermore, the fragility curves constructed are compared against those recommended by HAZUS. It is demonstrated that as the skew angle increases, skew bridges become more vulnerable to seismically induced damages. It is also shown that the HAZUS fragility curves may not lead to a consistent prediction of the vulnerability of skewed bridges.


2019 ◽  
Vol 5 (4) ◽  
pp. 796-809
Author(s):  
Farzad Mirzaie Aminian ◽  
Ehsan Khojastehfar ◽  
Hamid Ghanbari

Seismic fragility curves measure induced levels of structural damage against strong ground motions of earthquakes, probabilistically. These curves play an important role in seismic performance assessment, seismic risk analysis and making rational decisions regarding seismic risk management of structures. It has been demonstrated that the calculated fragility curves of structures are changed while the structures are excited by near-field strong ground motions in comparison with far-field ones. The objective of this paper is to evaluate the extents of modification for various performance levels and variety of structural heights. To achieve this goal, Incremental Dynamic Analysis (IDA) method is applied to calculate seismic fragility curves. To investigate the effects of earthquake characteristics, two categories of strong ground motions are assumed through IDA method, i.e. near and far-field sets. To study the extent of modification for various heights of structures, 4 – 6 and 10 stories moment-resisting concrete frames are considered as case studies.  Furthermore, to study the importance of involving near-field strong ground motions in seismic performance assessment of structures, the damage levels are considered as the renowned structural performance levels (i.e. Immediate Occupancy, Life Safety, Collapse Prevention and Sidesway Collapse). Achieved results show that the fragility curve of low-rise frame (i.e. 4-story case study) for IO limit state presents more probability of damage applying near-fault sets in comparison with far-fault set. Investigating fragility curves of the other performance levels (i.e. LS, CP and Collapse) and the higher frames, a straightforward conclusion, regarding probability of damage. To achieve the rational results for the higher frames, mean annual frequency of exceedance (MAFE) and probability of exceeding limit states in 50 years are calculated. MAFE is defined as the integration of structural fragility curve over seismic hazard curve. According to the achieved results for 6-story frame, if the structure is excited by near-field strong ground motions the probability of exceedance for LS, CP and collapse limit states in 50 years will be increased up to 11%, 2.4%, 0.7% and 0.4% respectively, comparing with the calculated probabilities while far-field strong ground motions are applied. On the other hand, while the 10-story case study is excited by near-field strong ground motions, the exceedance probability values for mentioned limit states decreases up to 20%, 5%, 4% and 4%, respectively. Consequently, it can be concluded that the lower is the height of the structure, the more will be the increment of probability of damage in the near-field conditions. Furthermore, this increment is much more for IO limit state in comparison with other limit states. These facts can be applied as a precaution for seismic design of low-rise structures, while they are located at the vicinity of active faults.


2002 ◽  
Vol 18 (1) ◽  
pp. 121-142 ◽  
Author(s):  
Ayman A. Shama ◽  
John B. Mander ◽  
Blaise A. Blabac ◽  
Stuart S. Chen

The main objective of this study is to assess the seismic vulnerability of a class of highway bridges existing in certain regions of the eastern and central states, where steel H-piles extends out of the soil to support the pier cap. During severe ground motions, the overall performance of the bridge will be governed by the local performance of the pile-to-cap beam connection. The scope of work was divided into several tasks as follows: (1) a theory was developed to predict the performance of the connection under lateral loading; (2) an initial experimental program was conducted to investigate the seismic behavior of the steel bents; (3) a retrofit strategy is proposed; (4) a second experimental study was carried out to validate the proposed retrofit method; and (5) fragility curves for such structures were developed. This paper deals with the first two tasks of the study. The other three tasks are the subject of a second companion paper (Shama 2002).


2020 ◽  
Author(s):  
Nafiseh Kiani

Structural reliability analysis is necessary to predict the uncertainties which may endanger the safety of structures during their lifetime. Structural uncertainties are associated with design, construction and operation stages. In design of structures, different limit states or failure functions are suggested to be considered by design specifications. Load and resistance factors are two essential parameters which have significant impact on evaluating the uncertainties. These load and resistance factors are commonly determined using structural reliability methods. The purpose of this study is to determine the reliability index for a typical highway bridge by considering the maximum moment generated by vehicle live loads on the bridge as a random variable. The limit state function was formulated and reliability index was determined using the First Order Reliability Methods (FORM) method.


2019 ◽  
Vol 46 (7) ◽  
pp. 567-580
Author(s):  
J.M. Jara ◽  
O. Montes ◽  
B.A. Olmos ◽  
G. Martínez

Most reinforced concrete (RC) bridges in many countries are medium-span length structures built in the last decades and designed for very low seismic forces. The evolution of seismic codes and the average age of the bridges require the evaluation of their seismic vulnerability. This study assesses the expected capacity, demand and damage of seismically deficient medium-length highway bridges, supported in frame-type piers using dynamic nonlinear methodologies. A parametric study of reinforced concrete retrofitted bridges with RC jacketing was conducted. The non-retrofitted structures are 30 m span simple supported bridges with pier heights in the range of 5–25 m. The main emphasis of the study is the assessment of the jacket parameters’ contribution to the seismic vulnerability of bridges. Particularly, it is quantified how jacket thickness and reinforcement ratio affect the probability of reaching a particular damage limit state. The retrofitted scheme includes three jacket thicknesses and three different longitudinal steel ratios. The results evaluate bridge demands and fragility curves to quantify the influence of RC jacketing on the seismic response of structures and allow to select the best jacket parameters that improve the expected seismic behavior of the bridge models. Additionally, the influence of model hysteresis degradation on the expected damage of retrofitted bridges was also determined.


2016 ◽  
Vol 20 (8) ◽  
pp. 1210-1222 ◽  
Author(s):  
Zhiliang Cao ◽  
Hao Wang ◽  
Tong Guo

A novel self-centering prestressed concrete pier with external energy dissipators has been developed to realize seismic resilient performance and enhanced corrosion-resisting property. Self-centering capacity of the pier is provided by the unbonded post-tensioned tendons and damage is mostly concentrated on the replaceable dissipators. To investigate the seismic behavior of the proposed pier, a detailed analytical model considering interface opening and dissipator deformation was developed and verified through existing cyclic load tests. Based on the proposed model, a prototype reinforced concrete pier and a self-centering prestressed concrete pier with similar backbone curves are designed, and fragility analyses are conducted on the two piers through incremental dynamic analysis. One maximum drift-based performance limit state (i.e. collapse prevention) and two residual drift-based performance limit states (i.e. emergent usage and reconstruction) are defined for seismic capacity evaluation. Fragility curves indicate that the self-centering prestressed concrete pier has a slightly higher peak drift demand owing to its inferior dissipating capacity as compared with the reinforced concrete pier, while sustains a much lower residual drift demand due to its inherent self-centering characteristic.


2012 ◽  
Vol 28 (2) ◽  
pp. 759-794 ◽  
Author(s):  
Nicola Tarque ◽  
Helen Crowley ◽  
Rui Pinho ◽  
Humberto Varum

The seismic vulnerability of single-story adobe dwellings located in Cusco, Peru, is studied based on a mechanics-based procedure, which considers the analysis of in-plane and out-of-plane failure mechanisms of walls. The capacity of each dwelling is expressed as a function of its displacement capacity and period of vibration and is evaluated for different limit states to damage. The seismic demand has been obtained from several displacement response spectral shapes. From the comparison of the capacity with the demand, probabilities of limit state exceedance have been obtained for different PGA values. The results indicate that fragility curves in terms of PGA are strongly influenced by the response spectrum shape; however, this is not the case for the derivation of fragility curves in terms of limit state spectral displacement. Finally, fragility curves for dwellings located in Pisco, Peru, were computed and the probabilities of limit state exceedance were compared with the data obtained from the 2007 Peruvian earthquake.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Stefanus Adi Kristiawan ◽  
Isyana Ratna Hapsari ◽  
Edy Purwanto ◽  
Marwahyudi Marwahyudi

Many damage limit states have been defined to characterize the extent of damages occurred in RC frame. Some of the damage limit states are defined by models that relate the limit states with the control points. Both control points and the limit state are expressed in term of response quantities. This research aims to evaluate the validity of such models by identifying the defined damage limit state with the corresponding damage based on FE modeling. The FE modeling provides a direct link between the damage and the response quantities. This link can be exploited as a basis for the evaluation. Based on the evaluation, this study proposed modified damage limit states. The response quantities with its corresponding progressive damage from FE simulation will also be used to inspect whether damage that can be expected to occur in the model structure is within the range estimated by the code based approach (CBA) damage limit state. Finally, fragility curves are constructed to assess the probability of the expected damage in the model structure under Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) scenarios. Utilizing the proposed damage limit states, the most probable damage in the structure falls in the category of slight if an earthquake at a level of DBE or MCE strikes the structure. However, at MCE level the probability of moderate damage attains 35%, or an increase by 23% compared to the DBE level.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Deming Zhu ◽  
Yaohan Li ◽  
You Dong ◽  
Peng Yuan

AbstractCoastal highway bridge is an essential component of the transportation system but threatened by natural hazards such as hurricanes. Damaged highway bridges result in not only transportation disruption, but also tremendous financial, societal, and life loss. Therefore, vulnerability and loss assessments of bridges under hurricane events are becoming primary concerns for decision-makers. This study provides an elaborate framework to assess the vulnerability and long-term loss of coastal bridges subjected to hurricane hazards based on three-dimensional (3D) numerical analyses. A 3D Computational Fluid Dynamics (CFD) numerical model is established to investigate wave-bridge interaction and a Finite Element (FE) model is established for the bridge to calculate structural responses under wave impacts. Based on the numerical results, the effects of wave force and overturning moment on structural capacity are studied and a probabilistic vulnerability model is developed. Structural demand, capacity, and limit states are determined, respectively. Uncertainties associated with wave parameters, structural capacity, and material properties, and the resulting consequences are considered. Then, fragility curves are calculated, and long-term damage loss is assessed. The proposed approach can benefit the management and design of coastal bridges against the impacts of hurricane hazards.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Iman Mansouri ◽  
Jong Wan Hu ◽  
Kazem Shakeri ◽  
Shahrokh Shahbazi ◽  
Bahareh Nouri

Designer engineers have always the serious challenge regarding the choice of the kind of structures to use in the areas with significant seismic activities. Development of fragility curve provides an opportunity for designers to select a structure that will have the least fragility. This paper presents an investigation into the seismic vulnerability of both steel and reinforced concrete (RC) moment frames using fragility curves obtained by HAZUS and statistical methodologies. Fragility curves are employed for several probability parameters. Fragility curves are used to assess several probability parameters. Furthermore, it examines whether the probability of the exceedence of the damage limit state is reduced as expected. Nonlinear dynamic analyses of five-, eight-, and twelve-story frames are carried out using Perform 3D. The definition of damage states is based on the descriptions provided by HAZUS, which gives the limit states and the associated interstory drift limits for structures. The fragility curves show that the HAZUS procedure reduces probability of damage, and this reduction is higher for RC frames. Generally, the RC frames have higher fragility compared to steel frames.


Sign in / Sign up

Export Citation Format

Share Document