scholarly journals Numerical simulation of thermal-hydraulic effect of wall-boundary layer of oil deposits In oil trunk pipelines

2019 ◽  
Vol 3 (2) ◽  
pp. 106-110
Author(s):  
R. Z. Sungatullin ◽  
◽  
R. M. Karimov ◽  
R. R. Tashbulatov ◽  
B. N. Mastobayev ◽  
...  
2007 ◽  
Vol 33 (2) ◽  
pp. 173-175 ◽  
Author(s):  
S. V. Bulovich ◽  
V. É. Vikolaĭnen ◽  
S. V. Zverintsev ◽  
R. L. Petrov

Author(s):  
Christian Eichler ◽  
Thomas Sattelmayer

Premixed combustion of hydrogen-rich mixtures involves the risk of flame flashback through wall boundary layers. For laminar flow conditions, the flashback mechanism is well understood and is usually correlated by a critical velocity gradient at the wall. Turbulent transport inside the boundary layer considerably increases the flashback propensity. Only tube burner setups have been investigated in the past and thus turbulent flashback limits were only derived for a fully-developed Blasius wall friction profile. For turbulent flows, details of the flame propagation in proximity to the wall remain unclear. This paper presents results from a new experimental combustion rig, apt for detailed optical investigations of flame flashbacks in a turbulent wall boundary layer developing on a flat plate and being subject to an adjustable pressure gradient. Turbulent flashback limits are derived from the observed flame position inside the measurement section. The fuels investigated cover mixtures of methane, hydrogen and air at various mixing ratios. The associated wall friction distributions are determined by RANS computations of the flow inside the measurement section with fully resolved boundary layers. Consequently, the interaction between flame back pressure and incoming flow is not taken into account explicitly, in accordance with the evaluation procedure used for tube burner experiments. The results are compared to literature values and the critical gradient concept is reviewed in light of the new data.


1972 ◽  
Vol 14 (6) ◽  
pp. 411-423 ◽  
Author(s):  
H. Marsh ◽  
J. H. Horlock

Equations for the passage-averaged flow in a cascade are used to derive the momentum integral equations governing the development of the wall boundary layer in turbomachines. Several existing methods of analysis are discussed and an alternative approach is given which is based on the passage-averaged momentum integral equations. The analysis leads to an anomaly in the prediction of the cross flow and to avoid this it is suggested that for the many-bladed cascade there should be a variation of the blade force through the boundary layer. This variation of the blade force can be included in the analysis as a force deficit integral. The growth of the wall boundary layer has been calculated by four methods and the predictions are compared with two sets of published experimental results for flow through inlet guide vanes.


1979 ◽  
Vol 101 (2) ◽  
pp. 233-245 ◽  
Author(s):  
J. De Ruyck ◽  
C. Hirsch ◽  
P. Kool

An axial compressor end-wall boundary layer theory which requires the introduction of three-dimensional velocity profile models is described. The method is based on pitch-averaged boundary layer equations and contains blade force-defect terms for which a new expression in function of transverse momentum thickness is introduced. In presence of tip clearance a component of the defect force proportional to the clearance over blade height ratio is also introduced. In this way two constants enter the model. It is also shown that all three-dimensional velocity profile models present inherent limitations with regard to the range of boundary layer momentum thicknesses they are able to represent. Therefore a new heuristic velocity profile model is introduced, giving higher flexibility. The end-wall boundary layer calculation allows a correction of the efficiency due to end-wall losses as well as calculation of blockage. The two constants entering the model are calibrated and compared with experimental data allowing a good prediction of overall efficiency including clearance effects and aspect ratio. Besides, the method allows a prediction of radial distribution of velocities and flow angles including the end-wall region and examples are shown compared to experimental data.


Sign in / Sign up

Export Citation Format

Share Document