scholarly journals On the capability of measuring the dielectric constant of human organs and tissues by radar sensing and mathematical modeling

Author(s):  
B. I. Avdochenko ◽  
V. D. Repenko ◽  
A. V. Ubaychin ◽  
A. V. Fateev ◽  
N. D. Khatkov ◽  
...  

Purpose of work. An implementation of small-sized high-resolution radar systems is proposed to solve both the problem of access to digital technologies and the development of preventive medicine and telemedicine.Method of research. The use of ultra-wideband video pulses, stroboscopic receivers, and laptops with specialized software allows to create an inexpensive diagnostic medical device. Working with such a diagnostic medical device does not require participation of highly qualified medical and radio engineering specialists.Research materials. The block diagram of the diagnostic device and experimental methodology are described. Preliminary tests of the diagnostic device are carried out. A capability to provide a millimeter-accuracy spatial resolution of a human body internal structure is presented. The mathematical model of interaction between the radio pulse and internal in homogeneities in the human body and the principle of processing the reflected signal are described.Results. The results of obtained measurements are presented as a sequence of time wavelet tomograms where the different wavelet cross-sections in the frequency domain allow to diagnose the state of internal organs based on the spectral characteristics.Conclusion. Digital representation of diagnostic results makes it possible to model health state and to create and exchange patient databases.

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Muzaffer Kanaan ◽  
Memduh Suveren

Results about the problem of accurate ranging within the human body using ultra-wideband signals are shown. The ability to accurately measure the range between a sensor implanted in the human body and an external receiver can make a number of new medical applications such as better wireless capsule endoscopy, next-generation microrobotic surgery systems, and targeted drug delivery systems possible. The contributions of this paper are twofold. First, we propose two novel range estimators: one based on an implementation of the so-called CLEAN algorithm for estimating channel profiles and another based on neural networks. Second, we develop models to describe the statistics of the ranging error for both types of estimators. Such models are important for the design and performance analysis of localization systems. It is shown that the ranging error in both cases follows a heavy-tail distribution known as the Generalized Extreme Value distribution. Our results also indicate that the estimator based on neural networks outperforms the CLEAN-based estimator, providing ranging errors better than or equal to 3.23 mm with 90% probability.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 558 ◽  
Author(s):  
Ashok Yadav ◽  
Vinod Kumar Singh ◽  
Akash Kumar Bhoi ◽  
Gonçalo Marques ◽  
Begonya Garcia-Zapirain ◽  
...  

A compact textile ultra-wideband (UWB) antenna with an electrical dimension of 0.24λo × 0.24λo × 0.009λo with microstrip line feed at lower edge and a frequency of operation of 2.96 GHz is proposed for UWB application. The analytical investigation using circuit theory concepts and the cavity model of the antenna is presented to validate the design. The main contribution of this paper is to propose a wearable antenna with wide impedance bandwidth of 118.68 % (2.96–11.6 GHz) applicable for UWB range of 3.1 to 10.6 GHz. The results present a maximum gain of 5.47 dBi at 7.3 GHz frequency. Moreover, this antenna exhibits Omni and quasi-Omni radiation patterns at various frequencies (4 GHz, 7 GHz and 10 GHz) for short-distance communication. The cutting notch and slot on the patch, and its effect on the antenna impedance to increase performance through current distribution is also presented. The time-domain characteristic of the proposed antenna is also discussed for the analysis of the pulse distortion phenomena. A constant group delay less than 1 ns is obtained over the entire operating impedance bandwidth (2.96–11.6 GHz) of the textile antenna in both situations, i.e., side by side and front to front. Linear phase consideration is also presented for both situations, as well as configurations of reception and transmission. An assessment of the effects of bending and humidity has been demonstrated by placing the antenna on the human body. The specific absorption rate (SAR) value was tested to show the radiation effect on the human body, and it was found that its impact on the human body SAR value is 1.68 W/kg, which indicates the safer limit to avoid radiation effects. Therefore, the proposed method is promising for telemedicine and mobile health systems.


Author(s):  
Giovanni Diraco ◽  
Alessandro Leone ◽  
Pietro Siciliano

Antennas ◽  
2021 ◽  
Author(s):  
M. M. Ivoylova ◽  
A. V. Kashin ◽  
V. A. Kozlov

The current trend in the development of radio engineering systems (RES) is to use wide spectrum signals, the application of which provides an increase in the resolution and secrecy of the radar operation, an increase in the speed and volume of transmitted information for communication and telemetry systems. The class of such signals includes ultrashort pulses (USP signals), radio pulses with linear frequency modulation (chirp signals). Also of interest are ultra-wideband (UWB) noise signals (UWBN signals), which have high electromagnetic compatibility, stealth and noise immunity. When designing promising ground-based and space-based RES using wide spectrum signals, an important task is to determine the distortions of their envelope shape and distortions of spectrum, as well as the change in the polarization of the emitted wave when passing through the Earth's ionosphere, since taking these distortions into account will provide conditions for optimal reception. This article presents the numerical assessment results of the expected distortions of the wide spectrum signals main types of the decimeter wavelength range, for middle latitudes at heights from 100 km to 1000 km. The conversion of the emitted pulse into a frequency modulated radio pulse is typical for the USP signal. For a chirp radio pulse with a monotonically increasing frequency, an initial decrease in duration with an increase in amplitude and subsequent stretching in time with further spread is typical (the amplitude change is estimated due to a change in the signal shape without taking into account spread). For a chirp radio pulse with a monotonically falling frequency and a UWBN signal, dispersion distortions manifest themselves as an increase in their duration with a decrease in amplitude. For all signal types under consideration that have passed through the ionosphere, a leading edge lag is observed, the dependences of frequency on time at an altitude of 1000 km are repeated and are close to hyperbolic character, the energy spectra envelope shape of the considered signals is almost not distorted. The polarization plane rotation for signals with a spectrum concentrated in the frequency range above 0.7 GHz does not exceed 45


1996 ◽  
Vol 42 (9) ◽  
pp. 1556-1557 ◽  
Author(s):  
K M Smith ◽  
J A Kates

Abstract We discuss the hurdles that developers and manufacturers of in vitro diagnostic devices face in obtaining regulatory approval to market their products in the US. A thorough understanding of medical device regulation and the early planning of a clinical and regulatory strategy are imperative in assuring successful and timely launches of new products. Finally, it is critical for manufacturers to establish a working partnership with the Food and Drug Administration to expedite their new product applications.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Muhammad Syafiq Noor Azizi ◽  
Azahari Salleh ◽  
Adib Othman ◽  
Nor Azlan Mohd Aris ◽  
Najmiah Radiah Mohamad

In modern telemedicine systems the physiological data of patients can be measured with the aid of electronic sensors located on and inside the human body. The collected medical data is then transmitted wirelessly to an external unit for processing, thereby enhancing the health monitoring, diagnosis, and therapy of the patients. In biomedical application, the process requires transmitting data, images and videos from inside the body taken by a radio system of a size of a pill seems to be the way. The use of non-ionizing electromagnetic radiation in various areas like medical application has arisen the electromagnetic radiation problem. The services provided by this type of application can cause either good or bad effects on human body depending on the power level, frequency and the way it being used. The implant antenna with ultra-wideband (UWB) frequency will be used by inserting it into the nerve of human arm in term of homogenous model. Ultra-wideband (UWB) is a wireless technology that potential applications in variety of medical areas such as implant wireless sensors, microwave hyperthermia, imaging and radar. It can transmit digital data over a wide frequency spectrum with very low power and at very high data rates. Hence, this paper present the non-ionizing electromagnetic radiation effect on electrical nerve fiber of human arm model with the presence of other human tissues such as fat, muscle, skin and etc. at ultra-wideband frequency which is expected to improve the understanding of radio propagation inside human body hence contribute to more advance and innovative medical implants. CST Microwave Studio is one of the EM modeling code which can be used for bio electromagnetic purpose.


Sign in / Sign up

Export Citation Format

Share Document