scholarly journals Static And Modal Analysis of Simply Supported Rectangular Plate By Using ANSYS

10.29007/815q ◽  
2018 ◽  
Author(s):  
Shubhangi Umale ◽  
Dr.Sangeeta Shinde

In the present work, Finite element analysis is done by using FEM based software ANSYS (version 15) on simply supported rectangular plate with uniformly distributed loading condition. The results obtained for two different material properties of steel and aluminium are compared by using static structural and modal analysis.The analysis result of deformation, stress and frequency at each mode on simply supported rectangular plate obtained by ANSYS are compared for two material properties. And these results are compared with regression analysis for accuracy.

2021 ◽  
Vol 71 (2) ◽  
pp. 161-170
Author(s):  
Adam Faircloth ◽  
Loic Brancheriau ◽  
Hassan Karampour ◽  
Stephen So ◽  
Henri Bailleres ◽  
...  

Abstract Transverse modal analysis of timber panels is a proven effective alternative method for approximating a material's elastic constants. Specific testing configurations, such as boundary conditions (BC) and location of sensor and impact, play a critical role in the accuracy of the results obtained from the experimental assessment. This article investigates signal-specific details, such as the signal quality factor, that directly relate to the damping properties and internal friction as well as frequency shifting obtained from six different BCs. A freely supported (FFFF), opposing minor sides (shorter length) simply supported, and major sides (longest length) free (SFSF), as well as the reverse of the SFSF configuration with minor sides free and major lengths simply supported (FSFS) and all sides simply supported (SSSS) setup, are investigated. Variations into the proposed methods used to achieve an FFFF supported system are also considered. A combination of experimental testing in parallel with finite element analysis was conducted to re-create the setup that would be used within a manufacturing facility for nondestructive assessment of full-size cross-laminated timber panels. The differences between all BC configurations for their resonance frequency quality and location indicate that a freely supported system provides higher-resolution results, good comparison of less than 10 percent error with the finite element analysis and experimental results, and advantages in a simple experimental setup for the intended application.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2011 ◽  
Vol 94-96 ◽  
pp. 902-908 ◽  
Author(s):  
Zheng Xin Zhang ◽  
Fang Lin Huang ◽  
Yan Bin Wu

This paper presents a method to simulate the mechanical behavior of magnetorheological fluid (MRF) subjected to magnetic field in the pre-yield region in ANSYS. The main idea is to devide an MRF element into two coincident elements, one of them has density and viscosity without shear modulus while another has shear modulus without density and viscosity. Taking a simply supported MRF sandwich beam as an example, good results and reasonable conclusion are obtained by comparing the results with the theoretical analysis and experimental study of Ref.[1]. The validity of finite element analysis is also investigated in this paper. At present, there is no exactly appropriate element type in ANSYS to model MRF, this kind of method called coincident elements method (CEM) will provide a new way to model the structures with MRF or MR dampers in ANSYS, and it also has reference roles for the future development of related elements in ANSYS.


2014 ◽  
Vol 962-965 ◽  
pp. 2957-2960
Author(s):  
Qian Peng Han ◽  
Bo Peng

This article summarized the general process of parametric modeling and finite element analysis of spur gear,PRO/E used to create parametric model,and Patran used to finite element analysis.Parametric modeling can reduce design period of the similar products,and modal analysis provide the basis for the selection and optimization of gear.


Sign in / Sign up

Export Citation Format

Share Document