scholarly journals Comparative Study of Direct Displacement Based and Forced Based Design Method for RC- Frame with Shear Wall

10.29007/lft5 ◽  
2018 ◽  
Author(s):  
Bijal Chaudhri ◽  
Dipali Patel

The Seismic design of structure has conventionally been force based. Displacement is the major factor for the damage rather than force. The alternative procedure for seismic design, which becomes more popular, is performance based design method. Displacement is global parameter of performance based design method. Direct displacement based design method has been used for seismic design of structure. The paper attempts to design moment resisting RC-frame using Displacement based design method and Forced based design method. 15-storey building with shear wall has been taken for parametric study. The parameter like base shear and lateral load distribution are taken for the study. It is observed that base shear of RC building calculated by DDBD is less compared to FBD.

Author(s):  
Anagha Girish Malu ◽  
Satyabrata Choudhury

The Direct Displacement-Based Design (DDBD) method has become a popular seismic design tool for structures. It takes drift as the performance criterion while designing structures. This method overcomes the shortcomings of the traditional force-based seismic design method, which considers peak force as the design parameter. In terms of structural damage, deflection is a better indicator, and hence, DDBD is a more acceptable method for seismic design. In this paper, a 12-story RC frame building with supplemental damping has been designed and investigated using a direct procedure of calculation, while considering the displacement-based design method. The performance of building with and without viscous dampers for a particular performance level has been compared. The effects of the non-linearity of dampers have also been discussed, and the effect of constant and story proportional drift proportional damper forces have been investigated. The results of various cases have been compared. It has been found that drift proportional story shear proportional carried damper design leads to construction economy.


2011 ◽  
Vol 38 (6) ◽  
pp. 616-626 ◽  
Author(s):  
JagMohan Humar ◽  
Farrokh Fazileh ◽  
Mohammad Ghorbanie-Asl ◽  
Freddy E. Pina

A displacement based method for the seismic design of reinforced concrete shear wall buildings of regular shape is presented. For preliminary design, approximate estimates of the yield and ultimate displacements are obtained, the former from simple empirical relations, and the latter to keep the ductility demand within ductility capacity and to limit the maximum storey drift to that specified by the codes. For a multi-storey building, the structure is converted to an equivalent single-degree-of-freedom system using an assumed deformation shape that is representative of the first mode. The required base shear strength of the system is determined from the inelastic demand spectrum corresponding to the ductility demand. In subsequent iterations a pushover analysis for the force distribution based on the first mode is used to obtain better estimates of yield and ultimate displacements taking into account stability under P–Δ effect. A multi-mode pushover analysis is carried out to find more accurate estimates of the shear demand.


2015 ◽  
Vol 9 (1) ◽  
pp. 811-825
Author(s):  
Wei Li ◽  
Linzhu Sun ◽  
Kejia Yang

Performance-based seismic design (PBSD) method has been widely recognized in recent years, it can be used for the future structural design. And the direct displacement-based design method (DDBD) is one of the most effective ways to implement the performance-based seismic design (PBSD) theory in current. In this paper, aiming to the composite frame consisting of composite beams and continuous compound spiral hoop reinforced concrete columns (CCSHRCS), its DDBD flowchart is presented, and the structure identified performance objectives in the preliminary design process and specific seismic performance assessment methods are given. Finally, through the calculation results of CCSHRCS frame case that demonstrated the reasonableness of the method. It provides an effective tool for the seismic design of CCSHRCS frame structures


2011 ◽  
Vol 255-260 ◽  
pp. 2555-2559
Author(s):  
Zhen Sun ◽  
Wei Qing Liu ◽  
Shu Guang Wang ◽  
Ding Zhou ◽  
Dong Sheng Du

A simple and efficient direct displacement-based design (DDBD) method is introduced to base isolated (BI) structures. Assuming the vibration mode of superstructure to be the shear type and considering the BI structure to be an equivalent single degree of freedom (ESDOF) system with spring and damper at the seismic isolation layer. The acceleration response spectrum in Chinese code is converted to displacement response spectrum. Corresponding to the design displacement, the equivalent period is obtained. The relationship of the deign displacement, equivalent period, equivalent stiffness and base shear of the system can be derived from the given formulations. Then, the distribution of the base shear along the floors is obtained. This method has been applied to the design of a 12-story BI structure with lead rubber bearings in high intensity zone in Suqian city, Jiangsu province. The results show that the method is feasible for the design of BI structures.


2016 ◽  
Vol 32 (3) ◽  
pp. 1565-1585 ◽  
Author(s):  
Matiyas A. Bezabeh ◽  
Solomon Tesfamariam ◽  
Siegfried F. Stiemer ◽  
Marjan Popovski ◽  
Erol Karacabeyli

This study proposes an iterative direct displacement based design method for a novel steel-timber hybrid structure. The hybrid structure incorporates cross-laminated timber (CLT) shear panels as an infill in steel moment-resisting frames. The proposed design method is applied to design three-, six-, and nine-story hybrid buildings, each with three bays and a CLT-infilled middle bay. Nonlinear time history analysis, using 20 earthquake ground motion records, is carried out to validate the performance of the design method. The results indicate that the proposed method effectively controls the displacements due to seismic excitation of the hybrid structure.


Sign in / Sign up

Export Citation Format

Share Document