scholarly journals COMPARISON OF BASE SHEAR AND LATERAL FORCE FOR FORCE BASED DESIGN METHOD AND DISPLACEMENT BASED DESIGN METHOD OF RC FRAME STRUCTURES

10.29007/lft5 ◽  
2018 ◽  
Author(s):  
Bijal Chaudhri ◽  
Dipali Patel

The Seismic design of structure has conventionally been force based. Displacement is the major factor for the damage rather than force. The alternative procedure for seismic design, which becomes more popular, is performance based design method. Displacement is global parameter of performance based design method. Direct displacement based design method has been used for seismic design of structure. The paper attempts to design moment resisting RC-frame using Displacement based design method and Forced based design method. 15-storey building with shear wall has been taken for parametric study. The parameter like base shear and lateral load distribution are taken for the study. It is observed that base shear of RC building calculated by DDBD is less compared to FBD.


2014 ◽  
Vol 539 ◽  
pp. 695-699
Author(s):  
Lan Fang Luo ◽  
Jing Xu

Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor (RDfactor). A design example is then followed to verify this method.


2020 ◽  
Vol 10 (22) ◽  
pp. 8230
Author(s):  
Mengmeng Gao ◽  
Shuang Li

In current structural design codes, elastic vibration modes are used for seismic design. However, when a structure is subjected to strong earthquakes and inelastic response or even when collapse damage is observed, the damage state is always unevenly distributed along the height of the structure. Such a phenomenon implies the materials of stories with elastic response and slight damage are not fully utilized. In this paper, a new practical and effective method, which improves collapse resistant capacity by making full use of materials, is proposed for reinforcement concrete (RC) frame structures at a structural collapse state. In this method, incremental dynamic analysis (IDA) is used to evaluate the structural collapse capacity. Tangent_ratio (TR) is formulated based on the IDA curves, and the longitudinal reinforcement of columns is modified based on the TR to achieve uniform distribution of damage along the height of building. Fewer variables are optimized and constraints of the provisions in current codes are considered, which makes the proposed procedure more computationally efficient and practical. The proposed method is employed on a 5-story RC frame structure to illustrate its feasibility and practicality. Comparison work indicates that the refined seismic design method can significantly increase the collapse resistant capacity and decrease the maximum inter-story drift ratio response under strong ground motion in a few iterative steps without a cost increase.


2019 ◽  
Vol 32 (3-4) ◽  
pp. 157-169
Author(s):  
Lingxin Zhang ◽  
◽  
Baijie Zhu ◽  
Yunqin Xue ◽  
Jialu Ma ◽  
...  

1994 ◽  
Vol 10 (2) ◽  
pp. 319-331 ◽  
Author(s):  
John F. Bonacci

This paper explores the development of a method that is useful for design of reinforced concrete (RC) frame structures to resist earthquakes. The substitute structure method, originally proposed in the 1970s, makes an analogy between viscously damped linear and hysteretic response for the purpose of estimating maximum displacement. The evolution of the method is retraced in order to emphasize its unique reliance on experimental results, which are needed to establish rules for assignment of substitute linear properties. Recent dynamic test results are used to extend significantly the calibration of the method, which furnishes design loads on the basis of drift and damage control.


Sign in / Sign up

Export Citation Format

Share Document