scholarly journals Chaotic Statistical Downscaling (CSD): Application and Comparison in the Bogotá River Basin

10.29007/wkcx ◽  
2018 ◽  
Author(s):  
Freddy Duarte ◽  
Gerald Corzo ◽  
Germán Santos ◽  
Oscar Hernández

This study presents a new statistical downscaling method called Chaotic Statistical Downscaling (CSD). The method is based on three main steps: Phase space reconstruction for different time steps, identification of deterministic chaos and a general synchronization predictive model. The Bogotá river basin was used to test the methodology. Two sources of climatic information are downscaled: the first corresponds to 47 rainfall gauges stations (1970-2016, daily) and the second is derived from the information of the global climate model MPI-ESM-MR with a resolution of 1,875° x 1,875° daily resolution. These time series were used to reconstruct the phase space using the Method of Time-Delay. The Time-Delay method allows us to find the appropriate values of the time delay and the embedding dimension to capture the dynamics of the attractor. This information was used to calculate the exponents of Lyapunov, which shows the existence of deterministic chaos. Subsequently, a predictive model is created based on the general synchronization of two dynamical systems. Finally, the results obtained are compared with other statistical downscaling models for the Bogota River basin using different measures of error which show that the proposed method is able to reproduce reliable rainfall values (RMSE=73.37).

2020 ◽  
Vol 24 (5) ◽  
pp. 2671-2686 ◽  
Author(s):  
Els Van Uytven ◽  
Jan De Niel ◽  
Patrick Willems

Abstract. In recent years many methods for statistical downscaling of the precipitation climate model outputs have been developed. Statistical downscaling is performed under general and method-specific (structural) assumptions but those are rarely evaluated simultaneously. This paper illustrates the verification and evaluation of the downscaling assumptions for a weather typing method. Using the observations and outputs of a global climate model ensemble, the skill of the method is evaluated for precipitation downscaling in central Belgium during the winter season (December to February). Shortcomings of the studied method have been uncovered and are identified as biases and a time-variant predictor–predictand relationship. The predictor–predictand relationship is found to be informative for historical observations but becomes inaccurate for the projected climate model output. The latter inaccuracy is explained by the increased importance of the thermodynamic processes in the precipitation changes. The results therefore question the applicability of the weather typing method for the case study location. Besides the shortcomings, the results also demonstrate the added value of the Clausius–Clapeyron relationship for precipitation amount scaling. The verification and evaluation of the downscaling assumptions are a tool to design a statistical downscaling ensemble tailored to end-user needs.


2009 ◽  
Vol 22 (13) ◽  
pp. 3838-3855 ◽  
Author(s):  
H. G. Hidalgo ◽  
T. Das ◽  
M. D. Dettinger ◽  
D. R. Cayan ◽  
D. W. Pierce ◽  
...  

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.


2021 ◽  
Vol 12 (4) ◽  
pp. 1253-1273
Author(s):  
Yoann Robin ◽  
Mathieu Vrac

Abstract. Bias correction and statistical downscaling are now regularly applied to climate simulations to make then more usable for impact models and studies. Over the last few years, various methods were developed to account for multivariate – inter-site or inter-variable – properties in addition to more usual univariate ones. Among such methods, temporal properties are either neglected or specifically accounted for, i.e. differently from the other properties. In this study, we propose a new multivariate approach called “time-shifted multivariate bias correction” (TSMBC), which aims to correct the temporal dependency in addition to the other marginal and multivariate aspects. TSMBC relies on considering the initial variables at various times (i.e. lags) as additional variables to be corrected. Hence, temporal dependencies (e.g. auto-correlations) to be corrected are viewed as inter-variable dependencies to be adjusted and an existing multivariate bias correction (MBC) method can then be used to answer this need. This approach is first applied and evaluated on synthetic data from a vector auto-regressive (VAR) process. In a second evaluation, we work in a “perfect model” context where a regional climate model (RCM) plays the role of the (pseudo-)observations, and where its forcing global climate model (GCM) is the model to be downscaled or bias corrected. For both evaluations, the results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted. However, increasing the number of lags too much does not necessarily improve the temporal properties, and an overly strong increase in the number of dimensions of the dataset to be corrected can even imply some potential instability in the adjusted and/or downscaled results, calling for a reasoned use of this approach for large datasets.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 867
Author(s):  
Dong Wang ◽  
Jiahong Liu ◽  
Weiwei Shao ◽  
Chao Mei ◽  
Xin Su ◽  
...  

Evaluating global climate model (GCM) outputs is essential for accurately simulating future hydrological cycles using hydrological models. The GCM multi-model ensemble (MME) precipitation simulations of the Climate Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6, respectively) were spatially and temporally downscaled according to a multi-site statistical downscaling method for the Hanjiang River Basin (HRB), China. Downscaled precipitation accuracy was assessed using data collected from 14 meteorological stations in the HRB. The spatial performances, temporal performances, and seasonal variations of the downscaled CMIP5-MME and CMIP6-MME were evaluated and compared with observed data from 1970–2005. We found that the multi-site downscaling method accurately downscaled the CMIP5-MME and CMIP6-MME precipitation simulations. The downscaled precipitation of CMIP5-MME and CMIP6-MME captured the spatial pattern, temporal pattern, and seasonal variations; however, precipitation was slightly overestimated in the western and central HRB and precipitation was underestimated in the eastern HRB. The precipitation simulation ability of the downscaled CMIP6-MME relative to the downscaled CMIP5-MME improved because of reduced biases. The downscaled CMIP6-MME better simulated precipitation for most stations compared to the downscaled CMIP5-MME in all seasons except for summer. Both the downscaled CMIP5-MME and CMIP6-MME exhibit poor performance in simulating rainy days in the HRB.


Sign in / Sign up

Export Citation Format

Share Document