scholarly journals Forcing Subsets for γ∗ tpw -sets in Graphs

2021 ◽  
Vol 14 (2) ◽  
pp. 451-470
Author(s):  
Cris Laquibla Armada

In this paper, the lower and upper bounds of the forcing total dr-power dominationnumber of any graph are determined. Total dr-power domination number of some special graphs such as complete graphs, star, fan and wheel graphs are shown. Moreover, the forcing total dr-power domination number of these graphs, together with paths and cycles, are determined.

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1860
Author(s):  
Rija Erveš ◽  
Janez Žerovnik

We obtain new results on 3-rainbow domination numbers of generalized Petersen graphs P(6k,k). In some cases, for some infinite families, exact values are established; in all other cases, the lower and upper bounds with small gaps are given. We also define singleton rainbow domination, where the sets assigned have a cardinality of, at most, one, and provide analogous results for this special case of rainbow domination.


Author(s):  
B. ShekinahHenry ◽  
Y. S. Irine Sheela

The [Formula: see text]-cube graph or hypercube [Formula: see text] is the graph whose vertex set is the set of all [Formula: see text]-dimensional Boolean vectors, two vertices being joined if and only if they differ in exactly one co-ordinate. The purpose of the paper is to investigate the signed domination number of this hypercube graphs. In this paper, signed domination number [Formula: see text]-cube graph for odd [Formula: see text] is found and the lower and upper bounds of hypercube for even [Formula: see text] are found.


2020 ◽  
Vol 40 (5) ◽  
pp. 599-615
Author(s):  
Zhila Mansouri ◽  
Doost Ali Mojdeh

A 2-rainbow dominating function (2-rD function) of a graph \(G=(V,E)\) is a function \(f:V(G)\rightarrow\{\emptyset,\{1\},\{2\},\{1,2\}\}\) having the property that if \(f(x)=\emptyset\), then \(f(N(x))=\{1,2\}\). The 2-rainbow domination number \(\gamma_{r2}(G)\) is the minimum weight of \(\sum_{v\in V(G)}|f(v)|\) taken over all 2-rainbow dominating functions \(f\). An outer-independent 2-rainbow dominating function (OI2-rD function) of a graph \(G\) is a 2-rD function \(f\) for which the set of all \(v\in V(G)\) with \(f(v)=\emptyset\) is independent. The outer independent 2-rainbow domination number \(\gamma_{oir2}(G)\) is the minimum weight of an OI2-rD function of \(G\). In this paper, we study the OI2-rD number of graphs. We give the complexity of the problem OI2-rD of graphs and present lower and upper bounds on \(\gamma_{oir2}(G)\). Moreover, we characterize graphs with some small or large OI2-rD numbers and we also bound this parameter from above for trees in terms of the order, leaves and the number of support vertices and characterize all trees attaining the bound. Finally, we show that any ordered pair \((a,b)\) is realizable as the vertex cover number and OI2-rD numbers of some non-trivial tree if and only if \(a+1\leq b\leq 2a\).


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zaryab Hussain ◽  
Ghulam Murtaza ◽  
Toqeer Mahmood ◽  
Jia-Bao Liu

Let G = G 1 × G 2 × ⋯ × G m be the strong product of simple, finite connected graphs, and let ϕ : ℕ ⟶ 0 , ∞ be an increasing function. We consider the action of generalized maximal operator M G ϕ on ℓ p spaces. We determine the exact value of ℓ p -quasi-norm of M G ϕ for the case when G is strong product of complete graphs, where 0 < p ≤ 1 . However, lower and upper bounds of ℓ p -norm have been determined when 1 < p < ∞ . Finally, we computed the lower and upper bounds of M G ϕ p when G is strong product of arbitrary graphs, where 0 < p ≤ 1 .


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 332 ◽  
Author(s):  
Muhammad Fazil ◽  
Muhammad Murtaza ◽  
Zafar Ullah ◽  
Usman Ali ◽  
Imran Javaid

Let G 1 and G 2 be disjoint copies of a graph G and g : V ( G 1 ) → V ( G 2 ) be a function. A functigraph F G consists of the vertex set V ( G 1 ) ∪ V ( G 2 ) and the edge set E ( G 1 ) ∪ E ( G 2 ) ∪ { u v : g ( u ) = v } . In this paper, we extend the study of distinguishing numbers of a graph to its functigraph. We discuss the behavior of distinguishing number in passing from G to F G and find its sharp lower and upper bounds. We also discuss the distinguishing number of functigraphs of complete graphs and join graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 349 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Suitberto Cabrera García ◽  
Andrés Carrión García

Let G be a graph without isolated vertices. A function f : V ( G ) → { 0 , 1 , 2 } is a total Roman dominating function on G if every vertex v ∈ V ( G ) for which f ( v ) = 0 is adjacent to at least one vertex u ∈ V ( G ) such that f ( u ) = 2 , and if the subgraph induced by the set { v ∈ V ( G ) : f ( v ) ≥ 1 } has no isolated vertices. The total Roman domination number of G, denoted γ t R ( G ) , is the minimum weight ω ( f ) = ∑ v ∈ V ( G ) f ( v ) among all total Roman dominating functions f on G. In this article we obtain new tight lower and upper bounds for γ t R ( G ) which improve the well-known bounds 2 γ ( G ) ≤ γ t R ( G ) ≤ 3 γ ( G ) , where γ ( G ) represents the classical domination number. In addition, we characterize the graphs that achieve equality in the previous lower bound and we give necessary conditions for the graphs which satisfy the equality in the upper bound above.


2019 ◽  
Vol 53 (2) ◽  
pp. 627-643 ◽  
Author(s):  
Hong Yang ◽  
Pu Wu ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Xiaosong Zhang ◽  
...  

Let k ≥ 1 be an integer and G be a simple and finite graph with vertex set V(G). A signed double Roman k-dominating function (SDRkDF) on a graph G is a function f:V(G) → {−1,1,2,3} such that (i) every vertex v with f(v) = −1 is adjacent to at least two vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and (iii) ∑u∈N[v]f(u) ≥ k holds for any vertex v. The weight of a SDRkDF f is ∑u∈V(G) f(u), and the minimum weight of a SDRkDF is the signed double Roman k-domination number γksdR(G) of G. In this paper, we investigate the signed double Roman k-domination number of trees. In particular, we present lower and upper bounds on γksdR(T) for 2 ≤ k ≤ 6 and classify all extremal trees.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 809
Author(s):  
Rija Erveš ◽  
Janez Žerovnik

We obtain new results on 2-rainbow domination number of generalized Petersen graphs P(5k,k). In some cases (for some infinite families), exact values are established, and in all other cases lower and upper bounds are given. In particular, it is shown that, for k>3, γr2(P(5k,k))=4k for k≡2,8mod10, γr2(P(5k,k))=4k+1 for k≡5,9mod10, 4k+1≤γr2(P(5k,k))≤4k+2 for k≡1,6,7mod10, and 4k+1≤γr2(P(5k,k))≤4k+3 for k≡0,3,4mod10.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zehui Shao ◽  
Enqiang Zhu ◽  
Fangnian Lang

Denote byγ(G)the domination number of a digraphGandCm□Cnthe Cartesian product ofCmandCn, the directed cycles of lengthm,n≥2. In 2010, Liu et al. determined the exact values ofγ(Cm□Cn)form=2,3,4,5,6. In 2013, Mollard determined the exact values ofγ(Cm□Cn)form=3k+2. In this paper, we give lower and upper bounds ofγ(Cm□Cn)withm=3k+1for different cases. In particular,⌈2k+1n/2⌉≤γ(C3k+1□Cn)≤⌊2k+1n/2⌋+k. Based on the established result, the exact values ofγ(Cm□Cn)are determined form=7and 10 by the combination of the dynamic algorithm, and an upper bound forγ(C13□Cn)is provided.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050076 ◽  
Author(s):  
Manal N. Al-Harere ◽  
Ahmed A. Omran ◽  
Athraa T. Breesam

In this paper, a new definition of graph domination called “Captive Domination” is introduced. The proper subset of the vertices of a graph [Formula: see text] is a captive dominating set if it is a total dominating set and each vertex in this set dominates at least one vertex which doesn’t belong to the dominating set. The inverse captive domination is also introduced. The lower and upper bounds for the number of edges of the graph are presented by using the captive domination number. Moreover, the lower and upper bounds for the captive domination number are found by using the number of vertices. The condition when the total domination and captive domination number are equal to two is discussed and obtained results. The captive domination in complement graphs is discussed. Finally, the captive dominating set of paths and cycles are determined.


Sign in / Sign up

Export Citation Format

Share Document