scholarly journals ASPECTS REGARDING THE ELECTROCOAGULATION APPLICATIONS IN THE WATER AND WASTEWATER TREATMENT

2016 ◽  
Vol 21 (2) ◽  
Author(s):  
AIDA DERMOUCHI ◽  
BENCHEIKH-LEHOCINE MOSSAAB ◽  
SIHEM ARRIS ◽  
VALENTIN NEDEFF ◽  
NARCIS BARSAN

Electrocoagulation (EC) has been known for over a century. Applications in industry as water and wastewater treatment processes were adapted for the removal of suspended solids, organic compounds, COD (Chemical oxygen demand), BOD (biochemical oxygen demand), metallic and non-metallic pollution. The main advantage in EC technology is the fact that it works without the addition of chemical products. The DC current between metallic electrodes immersed in the effluent is used as an energy source for this technique, which causes their dissolution. The effect of the main parameters, current density, treatment time, initial pH, temperature, electrode materials, conductivity and distance between the electrodes were investigated. According to the conclusion of the works published in recent years, the removal efficiencies of pollutants materials by EC process are very important.

Author(s):  
Mamatha Hopanna ◽  
Kiranmayi Mangalgiri ◽  
Temitope Ibitoye ◽  
Daniel Ocasio ◽  
Sebastian Snowberger ◽  
...  

2004 ◽  
Vol 50 (12) ◽  
pp. 119-124 ◽  
Author(s):  
K.W. Chau

The fractal structure and particle size of flocs are generally recognized as the two most crucial physical properties having impact on the efficiency of operation of several unit processes in water and wastewater treatment. In this study, an experimental investigation is undertaken on the effect of aggregate structure in water and wastewater treatment in Hong Kong. The fractal dimension of the resulting aggregate is employed as a measure of the aggregate structure. Small angle light scattering technique is used here. Different amounts of polymers are mixed to bacterial suspensions and the resulting structures are examined. The addition of polymer may foster aggregate formation by neutralization of the bacterial surface charge and enhance inter-particle bridging. The aggregation behavior may affect the efficiency of certain water and wastewater treatment processes such as dewatering and coagulation. The impacts of aggregate structure on two representative processes, namely, ultra-filtration membrane fouling and pressure filter dewatering efficiency, are studied. It is found that the looser flocs yield a more porous cake and less tendency to foul whilst more porous filter cakes yield more ready biosolids dewatering.


The Analyst ◽  
2018 ◽  
Vol 143 (23) ◽  
pp. 5629-5645 ◽  
Author(s):  
Piumie Rajapaksha P. ◽  
Aoife Power ◽  
Shaneel Chandra ◽  
James Chapman

The availability of safe water has a significant impact on all parts of society, its growth and sustainability, both politically and socioeconomically.


Research into the wide possibilities of membrane-based applications is an interesting subject for the modern study of membrane science and technology. Membrane processes have been established as viable and recognized separation techniques in water and wastewater treatment processes. Membranes can be prepared into many forms, each with its intrinsic properties which ultimately determine its suitability for specific applications as well as the overall performance of the process. Thus, this chapter highlights the fundamental concepts of membranes and membrane processes. The critical parameters in membrane processes, and membranes' structural characteristics and parameters are reviewed.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Elorm Obotey Ezugbe ◽  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal ◽  
Dennis Asante-Sackey ◽  
Gloria Amo-Duodu

Membrane technology has gained much ground in water and wastewater treatment over the past couple of decades. This is timely, as the world explores smart, eco-friendly, and cheap water and wastewater treatment technologies in its quest to make potable water and sanitation commonplace in all parts of the world. Against this background, this study investigated forward osmosis (FO) in the removal of salts (chlorides, sulphates, and carbonates) and organics (chemical oxygen demand (COD), turbidity, total suspended solids (TSS), and color) from a synthetic municipal wastewater (MWW), mimicking secondary-treated industrial wastewater, at very low feed and draw solution flow rates (0.16 and 0.14 L/min respectively), using 70 g/L NaCl solution as the draw solution. The results obtained showed an average of 97.67% rejection of SO42− and CO32− while Cl− was found to enrich the feed solution (FS). An average removal of 88.92% was achieved for the organics. A permeation flux of 5.06 L/m2.h was obtained. The kinetics of the ions transport was studied, and was found to fit the second-order kinetic model, with Pearson’s R-values of 0.998 and 0.974 for Cl− and CO32− respectively. The study proves FO as a potential technology to desalinate saline MWW.


2018 ◽  
Vol 24 (2) ◽  
pp. 41-45
Author(s):  
MIRELA SUCEVEANU ◽  
IULIAN SUCEVEANU ◽  
LUMINIŢA GROSU ◽  
IRINA-CLAUDIA ALEXA

The meat processing industry produces large volumes of slaughterhouse wastewater (SWW). For this reason, water and wastewater treatment has become crucial for the continuing development of the society. The present study reveals the water pollution degree from poultry and the swine slaughterhouses from Bacau (Romania). The possibility of reducing the quantity of pollutants by the active sludge treatment method is also presented. The efficiency of this treatment processes was evaluated through the following parameters: biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), turbidity, both before and after the active sludge treatment.


Sign in / Sign up

Export Citation Format

Share Document