scholarly journals DESIGN OF TRANSMISSION LINE WITH USE OF PLS-CADD & MONITORING SAG AND TENSION

Author(s):  
Vipin Kumar ◽  
Mantosh Kumar

Power is the basic key for growth of any country’s economy. The increased demand of electricity, need to optimize the utilization of power generation capacity and increase in the interconnections are the major issues with which power sector is dealing with. Energy consumption per person is also rising tremendously in developing countries. However, installing a new power plant cannot be a solution every time. Dense population, availability of land, initial and installation cost can be the major issues in this case. Huge transfer of power from generating plants to load centre at long distance with bulky transmission lines is causing to upgrade voltage class to Extra High Voltage (EHV) from High Voltage (HV). [1]

2019 ◽  
Vol 11 (1) ◽  
pp. 37-45
Author(s):  
Oktaria Handayani ◽  
Tasdik Darmana ◽  
Christine Widyastuti

Electricity need in Indonesia continues to increase in accordance with the rate of recovery of the economy and industry and the increase in population. The transmission line transmits electricity from the power plant to the load center via the High Voltage transmission lines (SUTT) or Extra High Voltage Transmissio lines (SUTET), because the long distance causes power losses. The condition before the reconducting of Tebing Tinggi - Kuala Tanjung transmission uses ACSR conductor types and after the reconducting has been replaced by the ACCC, where ACCC has 2 times the current trying of the type of ACSR. In this study, we will examine and analyze the magnitude of the power losses and the efficiency of the distribution of the two types of ACSR and ACCC supply channels with a case study of the 150 kV transmission system Tebing Tinggi - Kuala Tanjung which has a distance of 71.5 km. From the calculation results obtained, after the reconducting process using the conductor the ACCC was able to reduce power losses and increase efficiency by 1.35%.    


1975 ◽  
Vol 1 (2) ◽  
pp. 141-156 ◽  
Author(s):  
Joseph A. Fischer ◽  
Lawrence A. Salomone ◽  
Ian Watson

2012 ◽  
Vol 433-440 ◽  
pp. 2406-2410
Author(s):  
Dong Mei Sun ◽  
Jun Wen

In order to balance reactive power, reduce line losses, prevent excessive power frequency and switching over-voltage and adjust and control the line voltage etc. The long-distance and high voltage transmission lines are needed reactive power compensation. High voltage overhead transmission lines and high voltage submarine cable (including mixed-submarine) transmission lines are different, for example, the capacitance in the submarine cable lines is larger than in the conventional overhead lines. Therefore, the reactive power compensation on the EHV transmission lines which contains submarine cable lines is focus on the compensation of submarine cable lines. The reactive power compensation in 500 kV AC submarine cable interconnection project for Hainan power grid and Guangdong power grid[1], which is the first 500 kV long-distance and high-capacity sea trails interconnection project in China and which is just completed soon, is researched by Electro-Magnetic Transient Program——PSCAD/EMTDC (Power System Computer Aided Design/ Electro Magnetic Transient in DC System in this paper). The simulation results verifies that the role of shunt reactor which could absorb charging power and suppress the power frequency overvoltage for the long-distance and high-capacity hybrid submarine cable lines. The conclusions can offer references to suppress power frequency overvoltage and the reactive power compensation in extra high voltage transmission lines which is the mixed mode of overhead transmission lines and submarine cables.


Sign in / Sign up

Export Citation Format

Share Document