scholarly journals Investigation on Influence of Ultrasonic Impact Treatment (UIT) on Fatigue Life for Aluminium Alloy 2017-T4

2018 ◽  
Vol 21 (1) ◽  
pp. 141 ◽  
Author(s):  
Hussain J. M. Alalkawi ◽  
Aseel A. Alhamdany ◽  
Marib R. Abdul Hassan

Improving fatigue life is one of the most important issues in mechanical design; an investigation has been conducted on Al 2017-T4. Group of samples have been machined and prepared, some of specimens have been treated using the ultrasonic impact treatment (UIT) with one line peening. The fatigue tests were carried out under constant and variable amplitude (R=-1) at ambient temperature, in order to find out the fatigue life S-N curve and strength after treatment. It has been found significant increasing in strength after it was treated by (UIT).  The fatigue strength is improved after treatment up to 4.16% at 107 cycles, enhancement are present with 24% and 18.78% for the cumulative fatigue lives low-high and high–low respectively.  These results also show a strong tendency of increasing of fatigue strength after application of (UIT) with increase in mechanical properties of material used.

Author(s):  
Yuriy Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of a material, decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. The UP technique is based on the combined effect of high frequency impacts of special strikers and ultrasonic oscillations in treated material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


2020 ◽  
Vol 65 (4) ◽  
pp. 179-190
Author(s):  
Yuir Kudryavtsev

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UIT/UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UIT/UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UIT/UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The results of fatigue testing of large-scale welded specimens in as-welded condition and after application of UIT/UP are considered in this paper. It is shown that UIT/UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


2021 ◽  
Vol 14 (1) ◽  
pp. 1-10
Author(s):  
Marwa S. Mahammed ◽  
Hussain J. Alalkawi ◽  
Saad T. Faris

One of the important aspects of mechanical design is improving fatigue life.; In this work, the effect of Ultrasonic impact treatment (UIP) and shot peening (SP)on constant cumulative fatigue life and fatigue strength of AA7075-T6 were studied; The sample group was machined and primed, and some specimens were treated using ultrasonic impact therapy (UIT) with one line of peening. Fatigue experiments were conducted under constant and variable amplitude (R=-1) at ambient temperature to determine the fatigue life of the S-N curve and fatigue strength during treatment 3.46% and 8.57% at 107 cycles for (UIT) and (SP). Cumulative fatigue damage testing was carried out for two steps loading it is observed that the fatigue life for SP and UIP treated specimens was improved compared to the unpeeled results. The fatigue endurance limit was enhanced by 35% for UIT and 54% for SP. The fatigue life for both treatments was much improved compared to as-received metal. These results also show a strong tendency of increasing fatigue strength after application of (UIT) and (SP) with an increase in mechanical properties of the material used.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2013 ◽  
Vol 577-578 ◽  
pp. 429-432 ◽  
Author(s):  
Yukio Miyashita ◽  
Kyohei Kushihata ◽  
Toshifumi Kakiuchi ◽  
Mitsuhiro Kiyohara

Fatigue Property of an Extruded AZ61 Magnesium Alloy with the Processing Layer Introduced by Machining was Investigated. Rotating Bending Fatigue Tests were Carried out with the Specimen with and without the Processing Layer. According to Results of the Fatigue Tests, Fatigue Life Significantly Increased by Introducing the Processing Layer to the Specimen Surface. Fatigue Crack Initiation and Propagation Behaviors were Observed by Replication Technique during the Fatigue Test. Fatigue Crack Initiation Life of the Specimen with the Processing Layer was Slightly Longer than that of the Specimen without the Processing Layer. Higher Fatigue Crack Growth Resistance was also Observed when the Fatigue Crack was Growing in the Processing Layer in the Specimen with the Processing Layer. the Longer Fatigue Life Observed in the Fatigue Test in the Specimen with the Processing Layer could be Mainly due to the Higher Crack Growth Resistance. it is Speculated that the Fatigue Strength can be Controlled by Change in Condition of Machining Process. it could be Effective way in Industry to Improved Fatigue Strength only by the Cutting Process without Additional Surface Treatment Process.


Author(s):  
Masana Kato ◽  
Gang Deng ◽  
Masashi Yamanaka ◽  
Ryoji Yamamoto ◽  
Noboru Ono ◽  
...  

Abstract The surface fatigue failures of the traction drive rollers are different to that of gears and bearings because of the high traction force, skew and small slip ratio. In this research, fatigue tests of traction rollers were performed in different slip ratios and skew angles. The effects of running conditions on the fatigue lives of traction drive rollers are clarified and explained based on the surface crack growth and wear situations. Although a higher slip ratio will make a lower fatigue life, the fatigue strength will increase inversley under the skew conditions, because of the differences in mechanical and tribological condition for surface crack growth and the severe surface wear, which diminishes the surface crack length. For evaluation of the effects of such as slip ratio and skew on the fatigue strength of traction rollers, a new method is put forward in which the relationship between the surface temperature index and fatigue life is used instead of S-N curve.


Author(s):  
L M Masu ◽  
G Craggs

This paper reports on an investigation into the fatigue strength of thick-walled cylinders that contain a small transverse hole or cross bore in the cylinder wall having either a chamfer or a blending radius at its intersection with the main cylinder bore. Fatigue tests surprisingly show that plain cross-bore cylinders having thickness ratios K = 1.4 and 2.0 have a fatigue life that is marginally greater than comparable cylinders with blending features. A finite element investigation shows that local high stresses are produced on the surface of blending features and these stresses are considerably greater in magnitude than those found in plain cross-bore cylinders. These stress findings are used to explain the experimental fatigue life results obtained.


2013 ◽  
Vol 211 ◽  
pp. 83-88
Author(s):  
Marek Cieśla

Usefulness of the magnesium alloys for construction of structural components is determined, apart from their low density, by a number of favourable mechanical properties and in the case of their use for components of transport means additionally by good fatigue strength. In this study, 12 mm diameter extruded rods of AZ31 and AZ61 magnesium alloys were used as test material. After extrusion the rods were annealed at a temperature of 400°C, with a 60 min soaking period and subsequent cooling in air. Cylindrical specimens with a diameter of d0 = 8 mm were made for the fatigue test under high-cycle rotary bending conditions with the cycle asymmetry coefficient R = -1. The tests were carried out for a limited fatigue strength range. Examination of microstructure of tested alloys and fatigue fractography were also performed. During the high-cycle fatigue tests it was found that the AZ61 alloy has a longer fatigue life. Based on the obtained results, fatigue life characteristics of the tested materials were drawn up.


2014 ◽  
Vol 891-892 ◽  
pp. 1519-1524 ◽  
Author(s):  
Qian Chu Liu ◽  
Joe Elambasseril ◽  
Shou Jin Sun ◽  
Martin Leary ◽  
Milan Brandt ◽  
...  

Additive Manufacturing (AM) technologies are considered revolutionary because they could fundamentally change the way products are designed. Selective Laser Melting (SLM) is a metal based AM process with significant and growing potential for the manufacture of aerospace components. Traditionally a material needs to be listed in the Metallic Materials Properties Development and Standardization (MMPDS) handbook if it is to be considered certified. However, this requires a considerable amount of test data to be generated on the materials mechanical properties. Therefore, the MMPDS certification process does not lend itself easily to the certification of AM components as the final component can have similar mechanical properties to wrought alloys combined with the defects associated with traditional casting and welding technologies. These defects can substantially decrease the fatigue life of a fabricated component. The primary purpose of this investigation was to study the fatigue behaviour of as-built Ti-6Al-4V (Ti64) samples. Fatigue tests were performed on the Ti-6Al-4V specimens built using SLM with a variety of layer thicknesses and build (vertical or horizontal) directions. Fractography revealed the presence of a range of manufacturing defects located at or near the surface of the specimens. The experimental results indicated that Lack-of-Fusion (LOF) defects were primarily responsible for fatigue crack initiation. The reduction in fatigue life appeared to be affected by the location, size and shape of the LOF defect.


Sign in / Sign up

Export Citation Format

Share Document