scholarly journals Perbandingan Metode SYBR Green dan Hydrolysis Probe dalam Analisis DNA Gelatin Sapi dan Gelatin Babi Menggunakan Real Time Polymerase Chain Reaction

2017 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Zilhadia Zilhadia ◽  
Afifah Nurul Izzah ◽  
Ofa Suzanti Betha

Pemanfaatan gelatin secara luas menimbulkan kontroversi dan kekhawatiran bagi masyarakat muslim karena pada umumnya gelatin terbuat dari kulit babi dan sapi. Salah satu teknik analisis yang dapat membedakan gelatin sapi dan gelatin babi adalah Real Time Polymerase Chain Reaction (PCR). Real Time PCR merupakan metode analisis berbasis DNA yang handal, efektif, dan terpecaya. Dalam analisis kualitatif dan kuantitatif, Real Time PCR membutuhkan pewarna fluoresens. Pewarna fluoresens yang umum digunakan adalah SYBR green dan hydrolysis probe. Telah dilakukan perbandingan antara metode SYBR green dan hydrolysis probe dalam analisis DNA gelatin menggunakan Real Time PCR. DNA pada gelatin diisolasi menggunakan kit komersial. Isolat DNA gelatin sapi dan DNA gelatin babi didapatkan sebanyak 19,38 ng/μl dan 13,63 ng/μl dengan kemurnian 1,566 dan 1,573. Isolat DNA yang dianalisis dengan metode SYBR green menggunakan suhu annealing 65o C untuk primer sapi dan suhu annealing 60o C untuk primer babi. Isolat DNA yang dianalisis dengan metode hydrolysis probe menggunakan suhu annealing 60o C untuk primer babi dan primer sapi. Hasil analisis dari kedua metode menunjukkan bahwa metode hydrolysis probe lebih spesifik dalam mengidentifikasi DNA pada gelatin dibandingkan menggunakan metode SYBR green.

2011 ◽  
Vol 23 (6) ◽  
pp. 1160-1167 ◽  
Author(s):  
Diogenes Dezen ◽  
Franciscus A.M. Rijsewijk ◽  
Thais F. Teixeira ◽  
Carine L. Holz ◽  
Ana P. Varela ◽  
...  

Porcine circovirus-2 (PCV-2) is considered the major etiological agent of post-weaning multisystemic wasting syndrome (PMWS) in pigs. The clinical manifestations of the disease are correlated with moderate to high amounts of PCV-2 DNA in biological samples of affected pigs. A threshold of 107 DNA copies/ml is suggested as the trigger factor for symptoms. A comparative study was conducted to determine which quantitative method would be more suitable to estimate the PCV-2 DNA load. Two polymerase chain reaction (PCR) assays were developed: a competitive PCR (cPCR) and a SYBR Green–based real-time PCR. The assays were compared for their capacity to detect PCV-2 in DNA samples extracted from liver, lung, spleen, mesenteric lymph nodes, and kidney of PMWS-affected ( n = 23) or non–PMWS-affected pigs ( n = 9). Both assays could successfully quantify PCV-2 DNA in all tissue samples and were able to detect significant differences between the numbers of PCV-2 DNA copies found in tissues of PMWS-affected and non–PMWS-affected pigs (≥102.5). The highest mean viral loads were detected by the SYBR Green real-time PCR, up to 107.0±1.5 copies/100 ng of total DNA sample, while the cPCR detected up to 104.8±1.5. A mean difference of 101.8 was found between the amounts of PCV-2 DNA detected, using the SYBR Green real-time PCR and the cPCR, suggesting that the viral load threshold for PMWS should be determined for each particular assay.


Author(s):  
Ika Yasma Yanti ◽  
Dalima Ari Wahono Astrawinata

Toxigenic Clostridium difficile infection, causing a Pseudo Membrane Colitis (PMC) and Clostridium Difficile Associated Diarrhea(CDAD) has increased sharply. The largest risk factor is the use of antibiotics. The purpose of this study was to know how to determinethe prevalence and characteristics of subjects with Toxigenic Clostridium difficile and to assess the ability of the toxin rapid test comparedto real-time PCR. Ninety adult subjects with antibiotic therapy more than two (2) weeks were enrolled in this study. The results of toxinrapid test and real-time PCR were presented in a 2x2 table, statistical test used was Chi square. The prevalence of Toxigenic Clostridiumdifficile based on the toxin rapid test and by real-time PCR was 27.3% and 37.5%, respectively. There were significant differences betweenstool consistency and number of antibiotics used with the detection of Toxigenic Clostridium difficile. There was a relationship betweenthe duration of antibiotic therapy with the detection of Toxigenic Clostridium difficile using real-time PCR (p=0.010, RR=2.116). Thesensitivity, specificity, PPV, NPV, PLR and NLR rapid test against real-time PCR were 69.7%; 98.2%; 95.8%; 84.4%; 39.2 and 0.31,respectively. This study concluded that the prevalence of Clostridium difficile in RSCM was higher compared to that in Malaysia, Thailandand India; the subjects with antibiotic therapy for more than four (4) weeks had a double risk to have Toxigenic Clostridium difficilethan subjects with antibiotic therapy for less than that time (4 weeks). Thus, in this study, toxin rapid test could be used as a tool todetect Toxigenic Clostridium difficile.


2021 ◽  
Author(s):  
Yang Pan ◽  
Jing Chen ◽  
Junhuang Wu ◽  
Yongxia Wang ◽  
Junwei Zou ◽  
...  

Abstract Background: Canine Kobuvirus (CaKoV) and Canine Circovirus (CaCV) are viruses that infect dogs causing diarrheal symptoms that are very similar. However, there is no clinical method to detect a co-infection of these two viruses.Results: In this study, a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (PCR) assay for the rapid and simultaneous detection of CaKoV and CaCV was established. CaKoV and CaCV were distinguished by their different melting temperature which was 86℃ for CaKoV and 78℃ for CaCV. The assay was highly specific, with no cross-reactivity with other common canine viruses and demonstrated high sensitivity. The detection limits of CaKoV and CaCV were 8.924 × 101 copies/μL and 3.841 × 101 copies/μL, respectively. The highest intra- and inter-assay Ct value variation coefficients (CV) of CaKoV were 0.40% and 0.96%, respectively. For CaCV, the highest intra- and inter-assay Ct value variation coefficients were 0.26% and 0.70%, respectively. In 57 clinical samples, positive detection rates of CaKoV and CaCV were 8.77% (7/57) and 15.79% (9/57), respectively. The co-infection rate was 7.02% (4/57). Conclusions: The duplex SYBR Green I-based real-time PCR assay established in this study is a fast, efficient, and sensitive method for the simultaneous detection of the two viruses and provides a powerful tool for the rapid detection of CaKoV and CaCV in clinical practice.


2010 ◽  
Vol 134 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Zhengming Gu ◽  
Jianmin Pan ◽  
Matthew J. Bankowski ◽  
Randall T. Hayden

Abstract Context.—BK virus infections among immunocompromised patients are associated with disease of the kidney or urinary bladder. High viral loads, determined by quantitative polymerase chain reaction (PCR), have been correlated with clinical disease. Objective.—To develop and evaluate a novel method for real-time PCR detection and quantification of BK virus using labeled primers. Design.—Patient specimens (n = 54) included 17 plasma, 12 whole blood, and 25 urine samples. DNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Science, Indianapolis, Indiana); sample eluate was PCR-amplified using the labeled primer PCR method. Results were compared with those of a user-developed quantitative real-time PCR method (fluorescence resonance energy transfer probe hybridization). Results.—Labeled primer PCR detected less than 10 copies per reaction and showed quantitative linearity from 101 to 107 copies per reaction. Analytical specificity of labeled primer PCR was 100%. With clinical samples, labeled primer PCR demonstrated a trend toward improved sensitivity compared with the reference method. Quantitative assay comparison showed an R2 value of 0.96 between the 2 assays. Conclusions.—Real-time PCR using labeled primers is highly sensitive and specific for the quantitative detection of BK virus from a variety of clinical specimens. These data demonstrate the applicability of labeled primer PCR for quantitative viral detection and offer a simplified method that removes the need for separate oligonucleotide probes.


Sign in / Sign up

Export Citation Format

Share Document