scholarly journals Construction of immunoglobulin-binding peptides based on analysis of the protein A of Staphylococcus aureus interaction with immunoglobulins Fc fragment

Author(s):  
A. V. Lapko ◽  
E. S. Pustyul’ga ◽  
V. P. Golubovich

Over the past decades, molecular docking has become an increasingly popular tool for the development of new drugs. To search and design new compounds, a detailed study of the interaction of existing complexes of ligands with the target protein is necessary. According to the purpose to identify amino acid residues of the B domain of protein A of Staphylococcus aureus involved in interaction with immunoglobulins G, we studied the interaction mechanisms during the formation of a complex of protein A of the Staphylococcus aureus cell wall and immunoglobulins G by molecular docking. By the means of molecular docking we selected four amino acid residues of Phe132, Gln129, Tyr133 and Phe124, which we can use to construct a peptide analog of the active binding site of protein A with the Fc fragment of immunoglobulins G. The obtained results can serve as starting point for an effective strategy for finding new medicines, in particular, they can be used to further develop biospecific sorbent for the selective removal of immunoglobulins G from human blood.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4147
Author(s):  
Neha Gupta ◽  
Saurav Kumar Choudhary ◽  
Neeta Bhagat ◽  
Muthusamy Karthikeyan ◽  
Archana Chaturvedi

The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein–protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.


Author(s):  
Liu ◽  
Sun ◽  
Cui ◽  
Ding

To improve the biodegradation efficiency of fluoroquinolone antibiotics during sewage treatment, fluoroquinolone aerobic, anaerobic and facultative degrading enzymes for fluoroquinolone degradation were modified by molecular docking and homology modelling. First, amino acid residues of the binding sites of degrading enzymes for the target fluoroquinolones ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) were analysed by the molecular docking method. The hydrophobic amino acid residues within 5 Å of the target fluoroquinolone molecules were selected as the modification sites. The hydrophobic amino acid residues at the modified sites were replaced by the hydrophilic amino acid residues, and 150 amino acid sequence modification schemes of the degrading enzymes were designed. Subsequently, a reconstruction scheme of the degrading enzyme amino acid sequence reconstruction scheme was submitted to the SWISS-MODEL server and a selected homology modelling method was used to build a new structure of the degrading enzyme. At the same time, the binding affinities between the novel degrading enzymes and the target fluoroquinolones (represented by the docking scoring function) were evaluated by the molecular docking method. It was found that the novel enzymes can simultaneously improve the binding affinities for the three target fluoroquinolones, and the degradation ability of the six modification schemes was increased by more than 50% at the same time. Among the novel enzymes, the affinity effect of the novel anaerobic enzyme (6-1) with CIP, NOR and OFL was significantly increased, with increases of 129.24%, 165.06% and 169.59%, respectively, followed by the facultative enzyme and aerobic enzyme. In addition, the designed degrading enzymes had certain selectivity for the degradation of the target quinolone. Among the novel enzymes, the binding affinities of the novel anaerobic enzyme (6-3) and CIP, the novel aerobic enzyme (3-6) and NOR, and the novel facultative enzyme (13-6) and OFL were increased by 149.71%, 178.57% and 297.12% respectively. Calculations using the Gaussian09 software revealed that the degradation reaction barrier of the novel degrading enzyme (7-1) and CIP NOR and OFL decreased by 37.65 kcal·mol−1, 6.28 kcal·mol−1 and 6.28 kcal·mol−1, respectively, which would result in efficient degradation of the target fluoroquinolone molecules. By analysing the binding affinity of the degrading enzymes before and after the modification with methanol, it was further speculated that the degradation effect of the modified aerobic degrading enzymes on organic matter was lower than that before the modification, and the increase or decrease in the degradation effect was less than 10%. The mechanism analysis found that the interaction between the modified amino acid residues of the degrading enzymes and the fluoroquinolone molecules increased. The average distance between the amino acid residues and the fluoroquinolone molecules represented a comprehensive affinity effect, and its value was positively correlated with the degradation effect of the novel degrading enzymes.


2005 ◽  
Vol 19 (5) ◽  
pp. 1263-1276 ◽  
Author(s):  
Colette Galet ◽  
Mario Ascoli

Abstract The high degree of amino acid sequence homology and the divergent ligand binding affinities of the rat (r) and human (h) LH receptors (LHRs) allowed us to identify amino acid residues of their extracellular domain that are responsible for the different binding affinities of bovine (b) and hLH, and human choriogonadotropin (hCG) to the hLHR and rLHR. Because of the proposed importance of the β-sheets of the leucine-rich repeats (LRRs) of the extracellular domain of the LHR on hormone binding, we examined 10 divergent residues present in these regions by analyzing two complementary sets of mutants in which hLHR residues were substituted with the corresponding rLHR residues and vice versa. These experiments resulted in the identification of a single residue (a Ile or Ser in the C-terminal end of LRR2 of the hLHR or rLHR, respectively) that is important for hLH binding affinity. Surprisingly, however, this residue does not affect hCG or for bLH binding affinity. In fact, the results obtained with bLH and hCG show that several of the divergent residues in the β-sheets of LRR1–9 affect bLH binding affinity, but none of them affect hCG binding affinity. Importantly, our results also emphasize the involvement of residues outside of the β-sheets of the LRRs of the LHR in ligand binding affinity. This finding has to be considered in future models of the interaction of LH/CG with the LHR.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-Li Wang ◽  
Guang Hu ◽  
Qian Zhang ◽  
Yu-Xiu Yang ◽  
Qiao-Qiao Li ◽  
...  

Tyrosinase (TYR) is a rate-limiting enzyme in the synthesis of melanin, while direct TYR inhibitors are a class of important clinical antimelanoma drugs. This study established a spectrum-effect relationship analysis method and high-performance liquid chromatography-mass spectrometry (LC-MS) analysis method to screen and identify the active ingredients that inhibited TYR in Salvia miltiorrhiza–Carthamus tinctorius (Danshen–Honghua, DH) herbal pair. Seventeen potential active compounds (peaks) in the extract of DH herbal pair were predicted, and thirteen of them were tentatively identified by LC-MS analysis. Furthermore, TYR inhibitory activities of five pure compounds obtained from the DH herbal pair were validated in the test in which kojic acid served as a positive control drug. Among them, three compounds including protocatechuic aldehyde, hydroxysafflor yellow A, and tanshinone IIA were verified to have high TYR inhibitory activity (IC50 value of 455, 498, and 1214 μM, resp.) and bind to the same amino acid residues in TYR catalytic pocket according to the results of the molecular docking test. However, the other two compounds lithospermic acid and salvianolic acid A had a weak effect on TYR, as they do not combine with the active amino acid residues or act on the active center of TYR. Therefore, the developed methods (spectrum-effect relationship analysis and molecular docking) could be used to effectively screen TYR inhibitors in complex mixtures such as natural products.


1985 ◽  
Vol 230 (1) ◽  
pp. 133-141 ◽  
Author(s):  
L P Chung ◽  
D R Bentley ◽  
K B Reid

By using synthetic oligonucleotides as probes, plasmid clones containing portions of cDNA coding for human C4b-binding protein were isolated from a liver cDNA library. The entire amino acid sequence of the C4b-binding protein can be predicted from this study of the cloned cDNA when allied to a previous sequence study at the protein level [Chung, Gagnon & Reid (1985) Mol. Immunol. 22, 427-435], in which over 55% of the amino acid sequence, including the N-terminal 62 residues, was obtained. The plasmid clones isolated allowed the unambiguous determination of 1717 nucleotides of cDNA sequence between the codon for the 32nd amino acid in the sequence of C4b-binding protein and the 164th nucleotide in the 3′ non-translated region. The sequence studies show that the secreted form of C4b-binding protein, found in plasma, is composed of chains of apparent Mr 70 000 that contains 549 amino acid residues. Examination of the protein and cDNA sequence results show that there are at least two polymorphic sites in the molecule. One is at position 44, which can be glutamine or threonine, and the other is at position 309, which can be tyrosine or histidine. Northern-blot analysis indicated that the mRNA for C4b-binding protein is approx. 2.5 kilobases long. The N-terminal 491 amino acids of C4b-binding protein can be divided into eight internal homologous regions, each approx. 60 amino acids long, which can be aligned by the presence in each region of four half-cystine, one tryptophan and several other conserved residues. These regions in C4b-binding protein are homologous with the three internal-homology regions that have been reported to be present within the Ba region of the complement enzyme factor B and also to the internal-homology regions found in the non-complement beta 2-glycoprotein I.


2021 ◽  
Author(s):  
Guillaume A. Petit ◽  
Biswarajan Mohanty ◽  
Róisín M. McMahon ◽  
Stefan Nebl ◽  
David H. Hilko ◽  
...  

AbstractDiSulfide Bond forming proteins (DSB) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide bond protein A (DsbA) catalyzes the formation of disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, we identified two fragments - 1 (bromophenoxy propanamide) and 2 (4-methoxy-N-phenylbenzenesulfonamide), that bind to the DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. Crystal structures of the oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 suggests that both fragments bind to a hydrophobic pocket that is formed by a change in the side chain orientation of tyrosine 110. This conformational change opens a “cryptic” pocket that is not evident in the apo-protein structure. This binding location was supported by 2D-NMR studies which identified a chemical shift perturbation of the tyrosine 110 backbone amide resonance of more than 0.05 ppm upon addition of 2 mM of fragment 1 and over 0.04 ppm upon addition of 1 mM of fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (KD) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the modelled crystal structures which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have high binding affinity due to their size and the relatively small surface area that can be involved in intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. Identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.SynopsisDescribes the binding properties of two drug-like fragments to a conformationally dynamic site in the disulfide-bond forming protein A from Burkholderia pseudomallei.


2021 ◽  
Vol 68 (2) ◽  
pp. 289-303
Author(s):  
Mebarka Ouassaf ◽  
Salah Belaidi ◽  
Saida Khamouli ◽  
Houmam Belaidi ◽  
Samir Chtita

The discovery of antibacterials is considered one of the greatest medical achievements of all time. In this work, a combination of three computational analyzes: 3D-QSAR, molecular docking and ADME evaluation were applied in thienopyrimidine derivatives intended toward gram-positive bacterium Staphylococcus aureus. The validity of 3D-QSAR model was tested with a set of data which is divided into a training and a test set. The two models constructed (CoMFA and CoMSIA) show good statistical reliability (q2 = 0.758; r2 = 0.96; r2pred = 0.783) and (q2 = 0.744; r2 = 0.97; r2pred = 0.625) respectively. In addition, docking methods were applied to understand the structural features responsible for the affinity of the ligands in the binding of S. aureus DNA gyrase. Drug likeness and ADME analysis applied in this series of new proposed compounds, have shown that the five lead molecules would have the potential to be effective drugs and could be used as a starting point for designing compounds against Staphylococcus aureus.


2001 ◽  
Vol 48 (1) ◽  
pp. 131-135 ◽  
Author(s):  
R Slusarz ◽  
R Kaźmierkiewicz ◽  
A Giełdoń ◽  
B Lammek ◽  
J Ciarkowski

Molecular docking simulations are now fast developing area of research. In this work we describe an effective procedure of preparation of the receptor-ligand complexes. The amino-acid residues involved in ligand binding were identified and described.


2019 ◽  
Vol 22 ◽  
pp. 292-300
Author(s):  
Hanna Skubatz

Purpose: Gabapentin, a drug for neuropathic pain, exerts its therapeutic effect via inhibition of the a2d subunit of N-type Ca2+ channels. Thus, finding peptides that specifically displace gabapentin from its binding site may lead to the development of new drugs. Methods: Displacement of bound [3H]-gabapentin in membrane preparations of rat cerebral cortex and of human Cav2.2/β3/α2δ1 expressed in CHO cell line. Results: Neuropeptide FLFQPQRF-NH2 specifically displaced bound [3H]-gabapentin in membrane preparations from rats and CHO cells. Truncation of the C-terminus of FLFQPQRF-NH2 by three amino acid residues to produce FLFQP-NH2 improved the displacement of gabapentin. FLFQP-NH2 displaced bound  [3H]-gabapentin with IC50 and Ki values of 2.7 µM and 1.7 µM, respectively. Deletion of two amino acid residues (FQ) in the middle of the FLFQP-NH2 sequence yielded FLP-NH2 that displaced bound [3H]-gabapentin with a lower affinity.  IC50 and Ki values were 11.9 µM and 7.8 µM, respectively. Neutral binding cooperativity existed when of FLFQP-NH2, FLP- NH2 and gabapentin when incubated together. FLFQPQRF-NH2 but not FLFQP-NH2 displaced bound [3H]-gabapentin to membrane preparations of human Cav2.2/b3/a2d1 expressed in CHO cells. Conclusion: FLFQPQRF-NH2, FLFQP-NH2 and FLP-NH2 displace bound gabapentin in membrane preparations of rat cerebral cortex. Binding cooperativity was detected when GBP/FLFQP-NH2/FLP-NH2 were incubated together. These novel binding sites may provide new approaches to modulate L-type Ca2+ channels.


Sign in / Sign up

Export Citation Format

Share Document