peptide analog
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Justa Friebus-Kardash ◽  
Petra Schulz ◽  
Sandy Reinicke ◽  
Cordula Karthaus ◽  
Quirino Schefer ◽  
...  

Background: Chemerin plasma concentration has been reported to be positively correlated with the risk of colorectal cancer. However, the potential regulation of CRC tumorigenesis and progression has not yet been investigated in an experimental setting. This study addresses this hypothesis by investigating proliferation, colony formation, and migration of CRC cell lines in vitro as well as in animal models. Methods: In vitro, microscopic assays to study proliferation, as well as a scratch-wound assay for migration monitoring, were applied using the human CRC cell lines HCT116, HT29, and SW620 under the influence of the chemerin analog CG34. The animal study investigated HCT116-luc and HT29-luc subcutaneous tumor size and bioluminescence during treatment with CG34 versus control, followed by an ex-vivo analysis of vessel density and mitotic activity. Results: While the proliferation of the three CRC cell lines in monolayers was not clearly stimulated by CG34, the chemerin analog promoted colony formation in three-dimensional aggregates. An effect on cell migration was not observed. In the treatment study, CG34 significantly stimulated both growth and bioluminescence signals of HCT116-luc and HT29-luc xenografts. Conclusions: The results of this study represent the first indication of a tumor growth-stimulating effect of chemerin signaling in CRC.


2021 ◽  
Author(s):  
Justa Friebus-Kardash ◽  
Petra Schulz ◽  
Sandy Reinicke ◽  
Cordula Karthaus ◽  
Quirino Schefer ◽  
...  

Background: Chemerin plasma concentration has been reported to be positively correlated with the risk of colorectal cancer. However, the potential regulation of CRC tumorigenesis and progression has not yet been investigated in an experimental setting. This study addresses this hypothesis by investigating proliferation, colony formation and migration of CRC cell lines in vitro as well as in animal models. Methods: In vitro, microscopic assays to study proliferation as well as a scratch-wound assay for migration monitoring were applied using the human CRC cell lines HCT116, HT29 and SW620 under the influence of the chemerin analog CG34. The animal study investigated HCT116-luc and HT29-luc subcutaneous tumor size and bioluminescence during treatment with CG34 versus control, followed by ex-vivo analysis of vessel density and mitotic activity. Results: While proliferation of the three CRC cell lines in monolayers was not clearly stimulated by CG34, the chemerin analog promoted colony formation in three-dimensional aggregates. An effect on cell migration was not observed. In the treatment study, CG34 significantly stimulated both growth and bioluminescence signal of HCT116-luc and HT29-luc xenografts. Conclusions: The results of this study represent the first indication of a tumor growth-stimulating effect of chemerin signaling in CRC.


Author(s):  
Horng H. Chen ◽  
Siu-Hin Wan ◽  
Seethalakshmi R. Iyer ◽  
Valentina Cannone ◽  
S. Jeson Sangaralingham ◽  
...  

M-atrial natriuretic peptide (MANP) is a novel ANP (atrial natriuretic peptide) analog engineered to be an innovative particulate GC-A (guanylyl cyclase A) receptor activator. The rationale for its design was to develop a best-in-class GC-A activator with enhanced cGMP activating, natriuretic, aldosterone-suppressing, and blood pressure–lowering actions, compared with endogenous ANP, for the treatment of hypertension. Here, we report the first-in-human study on the safety, tolerability, neurohumoral, renal, and blood pressure–lowering properties of MANP in hypertension subjects. This was an open-label sequential single ascending dose design in which all subjects stopped all antihypertensive agents for 14 days before receiving a single subcutaneous injection of MANP. MANP was safe, well tolerated, activated cGMP, induced natriuresis, reduced aldosterone, and decreased blood pressure at or below the maximal tolerated dose. Thus, MANP has a favorable safety profile and produced expected pharmacological effects in human hypertension. Our results support further investigations of MANP as a potential future blood pressure–lowering, natriuretic and aldosterone-suppressing drug for hypertension especially resistant hypertension.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Frans J. Walther ◽  
Holly Chan ◽  
Jacob R. Smith ◽  
Mike Tauber ◽  
Alan J. Waring

AbstractInhalation of dry powder synthetic lung surfactant may assist spontaneous breathing by providing noninvasive surfactant therapy for premature infants supported with nasal continuous positive airway pressure. Surfactant was formulated using spray-drying with different phospholipid compositions (70 or 80 total weight% and 7:3 or 4:1 DPPC:POPG ratios), a surfactant protein B peptide analog (KL4, Super Mini-B, or B-YL), and Lactose or Trehalose as excipient. KL4 surfactant underperformed on initial adsorption and surface activity at captive bubble surfactometry. Spray-drying had no effect on the chemical composition of Super Mini-B and B-YL peptides and surfactant with these peptides had excellent surface activity with particle sizes and fine particle fractions that were well within the margins for respiratory particles and similar solid-state properties. Prolonged exposure of the dry powder surfactants with lactose as excipient to 40 °C and 75% humidity negatively affected hysteresis during dynamic cycling in the captive bubble surfactometer. Dry powder synthetic lung surfactants with 70% phospholipids (DPPC and POPG at a 7:3 ratio), 25% trehalose and 3% of SMB or B-YL showed excellent surface activity and good short-term stability, thereby qualifying them for potential clinical use in premature infants.


2021 ◽  
Vol 22 (7) ◽  
pp. 3734
Author(s):  
Minseon Kim ◽  
Jinyoung Son ◽  
Yongae Kim

Naturally derived antibacterial peptides exhibit excellent pharmacological action without the risk of resistance, suggesting a potential role as biologicals. Lactophoricin-I (LPcin-I), found in the proteose peptone component-3 (PP3; lactophorin) of bovine milk, is known to exhibit antibiotic activity against Gram-positive and Gram-negative bacteria. Accordingly, we derived a new antibacterial peptide and investigated its structure–function relationship. This study was initiated by designing antibacterial peptide analogs with better antibacterial activity, less cytotoxicity, and shorter amino acid sequences based on LPcin-I. The structural properties of antibacterial peptide analogs were investigated via spectroscopic analysis, and the antibacterial activity was confirmed by measurement of the minimal inhibitory concentration (MIC). The structure and mechanism of the antibacterial peptide analog in the cell membrane were also studied via solution-state nuclear magnetic resonance (NMR) and solid-state NMR spectroscopy. Through 15N one-dimensional and two-dimensional NMR experiments and 31P NMR experiments, we suggest the 3D morphology and antibacterial mechanism in the phospholipid bilayer of the LPcin analog. This study is expected to establish a system for the development of novel antibacterial peptides and to establish a theoretical basis for research into antibiotic substitutes.


2020 ◽  
Vol 117 (44) ◽  
pp. 27620-27626 ◽  
Author(s):  
Renee M. Fleeman ◽  
Luis A. Macias ◽  
Jennifer S. Brodbelt ◽  
Bryan W. Davies

The extracellular polysaccharide capsule ofKlebsiella pneumoniaeresists penetration by antimicrobials and protects the bacteria from the innate immune system. Host antimicrobial peptides are inactivated by the capsule as it impedes their penetration to the bacterial membrane. While the capsule sequesters most peptides, a few antimicrobial peptides have been identified that retain activity against encapsulatedK. pneumoniae,suggesting that this bacterial defense can be overcome. However, it is unclear what factors allow peptides to avoid capsule inhibition. To address this, we created a peptide analog with strong antimicrobial activity toward severalK. pneumoniaestrains from a previously inactive peptide. We characterized the effects of these two peptides onK. pneumoniae, along with their physical interactions withK. pneumoniaecapsule. Both peptides disrupted bacterial cell membranes, but only the active peptide displayed this activity against capsulatedK. pneumoniae. Unexpectedly, the active peptide showed no decrease in capsule binding, but did lose secondary structure in a capsule-dependent fashion compared with the inactive parent peptide. We found that these characteristics are associated with capsule-peptide aggregation, leading to disruption of theK. pneumoniaecapsule. Our findings reveal a potential mechanism for disrupting the protective barrier thatK. pneumoniaeuses to avoid the immune system and last-resort antibiotics.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4585
Author(s):  
Anton Amadeus Hörmann ◽  
Maximilian Klingler ◽  
Maliheh Rezaeianpour ◽  
Nikolas Hörmann ◽  
Ronald Gust ◽  
...  

Targeting of cholecystokinin-2 receptor (CCK2R) expressing tumors using radiolabeled minigastrin (MG) analogs is hampered by rapid digestion of the linear peptide in vivo. In this study, a new MG analog stabilized against enzymatic degradation was investigated in preclinical studies to characterize the metabolites formed in vivo. The new MG analog DOTA-DGlu-Pro-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2 comprising site-specific amino acid substitutions in position 2, 6 and 8 and different possible metabolites thereof were synthesized. The receptor interaction of the peptide and selected metabolites was evaluated in a CCK2R-expressing cell line. The enzymatic stability of the 177Lu-labeled peptide analog was evaluated in vitro in different media as well as in BALB/c mice up to 1 h after injection and the metabolites were identified based on radio-HPLC analysis. The new radiopeptide showed a highly increased stability in vivo with >56% intact radiopeptide in the blood of BALB/c mice 1 h after injection. High CCK2R affinity and cell uptake was confirmed only for the intact peptide, whereas enzymatic cleavage within the receptor specific C-terminal amino acid sequence resulted in complete loss of affinity and cell uptake. A favorable biodistribution profile was observed in BALB/c mice with low background activity, preferential renal excretion and prolonged uptake in CCK2R-expressing tissues. The novel stabilized MG analog shows high potential for diagnostic and therapeutic use. The radiometabolites characterized give new insights into the enzymatic degradation in vivo.


2020 ◽  
Vol 295 (44) ◽  
pp. 14893-14905 ◽  
Author(s):  
Xianlong Gao ◽  
You-Hong Cheng ◽  
Garrett A. Enten ◽  
Anthony J. DeSantis ◽  
Vadim Gaponenko ◽  
...  

The chemokine receptor CXCR4, a G protein–coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce β-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced β-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.


Sign in / Sign up

Export Citation Format

Share Document