scholarly journals In Silico Prediction, Molecular Docking and Dynamics Studies of Steroidal Alkaloids of Holarrhena pubescens Wall. ex G. Don to Guanylyl Cyclase C: Implications in Designing of Novel Antidiarrheal Therapeutic Strategies

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4147
Author(s):  
Neha Gupta ◽  
Saurav Kumar Choudhary ◽  
Neeta Bhagat ◽  
Muthusamy Karthikeyan ◽  
Archana Chaturvedi

The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein–protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.

Author(s):  
Bina Lohita Sari ◽  
Abdul Mun’im ◽  
Arry Yanuar ◽  
Rezi Riadhi

<p><strong>Objective: </strong><em>Terminalia catappa</em> L. (<em>T. catappa</em> L.) fruit has inhibitory activity on α-glucosidase, therefore, can be a potential natural source for the treatment of type II diabetes mellitus. Inhibitory activity of ethanol fruit extract with IC<sub>50</sub> 3.02 µg/ml was the strongest inhibition when compared with 54 medicinal plants used as an antidiabetic agent in Indonesia. This project was aimed to find the active compound from <em>T</em><em>.</em><em> catappa</em> L. fruit using molecular docking, identification ethyl acetate subfraction using TLC and GC-MC, determine <em>in vitro</em> test on α-glucosidase inhibitory activity from ethyl acetate extract and subfraction.</p><p><strong>Methods: </strong>Molecular docking using AutoDock 4.2 was performed to predict the binding modes of<strong> </strong>α-glucosidase enzyme from <em>Saccharomyces cereviciae</em> with 13 chemical constituents of <em>T. catappa</em>. α-Glucosidase enzyme was obtained from Protein Data Bank (PDB code: 3A4A). Acarbose, voglibose and miglitol were used as standards. Docking result determines the highest binding energy (ΔG) and inhibition constants (Ki) as an active compound. Visualization of amino acid residues around the active compound was identified with PyMOL and LigPlot. Screening of active compound was carried out by <em>T</em><em>.</em><em> catappa</em> L. fruit remaceration extraction use hexane and ethyl acetate. Ethyl acetate extract was separated on silica gel column chromatography using n-hexane, ethyl acetate and methanol sequentially based on polarity of each solvent. Identification of an active compound from ethyl acetate sub fractions using TLC and GC-MS method. The inhibitory activity of the active compound of α-glucosidase was determined with <em>in vitro</em> test using α-glucosidase enzyme.</p><p><strong>Results: </strong>The highest binding energy and inhibition constant is β–sitosterol with ΔG-10.61 kcal/mol and Ki 0.02 µM. The ligand was situated around of 18 amino acid residues. Ethyl acetate subfractions A, B and C showed that subfraction B contains similar spot characteristic and Rf value (0.42) with β-Sitosterol standard. Identification with GC-MS gave β–sitosterol acetate and sitostenone. Redocking process of β–sitosterol acetate and sitostenone showed ΔG-11.14 kcal/mol and-9.79 kcal/mol with Ki 0.01 μM and 0.07 μM respectively. <em>In vitro</em> test of acarbose, ethyl acetate extract and subfraction B gave IC<sub>50</sub> 17.52; 192.51 and 296.28 µg/ml.</p><p><strong>Conclusion: </strong>Three steroids that are β-sitosterol, β-sitosterol acetate and sitostenone were<strong> t</strong>he active compounds responsible for α-glucosidase inhibitory activity of <em>T</em><em>.</em><em> catappa </em>L. fruit. According to the <em>in vitro</em> test, ethyl acetate extract has stronger α-glucosidase inhibitory activity than ethyl acetate subfraction B.</p>


2020 ◽  
Vol 20 (14) ◽  
pp. 1714-1721
Author(s):  
Hatem A. Abuelizz ◽  
El Hassane Anouar ◽  
Mohamed Marzouk ◽  
Mizaton H. Hasan ◽  
Siti R. Saleh ◽  
...  

Background: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies. Objective: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines. Methods: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets. Results: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase. Conclusion: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1995 ◽  
Vol 60 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Ivana Zoulíková ◽  
Ivan Svoboda ◽  
Jiří Velek ◽  
Václav Kašička ◽  
Jiřina Slaninová ◽  
...  

The vasoactive intestinal (poly)peptide (VIP) is a linear peptide containing 28 amino acid residues, whose primary structure indicates a low metabolic stability. The following VIP fragments, as potential metabolites, and their analogues were prepared by synthesis on a solid: [His(Dnp)1]VIP(1-10), VIP(11-14), [D-Arg12]VIP(11-14), [Lys(Pac)15,21,Arg20]VIP(15-22), and VIP(23-28). After purification, the peptides were characterized by amino acid analysis, mass spectrometry, RP HPLC, and capillary zone electrophoresis. In some tests, detailed examination of the biological activity of the substances in vivo and in vitro gave evidence of a low, residual activity of some fragments, viz. a depressoric activity in vivo for [His(Dnp)1]VIP(1-10) and a stimulating activity for the release of α-amylase in vitro and in vivo for [Lys(Pac)15,21,Arg20]VIP(15-22) and VIP(23-28).


Biologia ◽  
2007 ◽  
Vol 62 (4) ◽  
Author(s):  
Reda Sammour

AbstractThe main goal of this work was to make the cDNA-encoding subunit G2 of soybean glycinin, capable of self-assembly in vitro and rich in methionine residues. Two mutants (pSP65/G4SacG2 and pSP65/G4SacG2HG4) were therefore constructed. The constructed mutants were successfully assembled in vitro into oligomers similar to those occurred in the seed. The successful self-assembly was due to the introduction of Sac fragment of Gy4 (the codons of the first 21 amino acid residues), which reported to be the key element in self-assembly into trimers. The mutant pSP65/G4SacG2HG4 included the acidic chain of Gy4 (HG4), which was previously molecularly modified to have three methionine residues. This mutant will be useful in the efforts to improve the seed quality.


2001 ◽  
Vol 355 (3) ◽  
pp. 663-670 ◽  
Author(s):  
Claudia TROST ◽  
Christiane BERGS ◽  
Nina HIMMERKUS ◽  
Veit FLOCKERZI

The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca2+-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca2+-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1) retention of in vitro translated TRP4 and of TRP4 protein solubilized from bovine adrenal cortex by CaM–Sepharose in the presence of Ca2+, and (2) TRP4–glutathione S-transferase pull-down experiments. Two domains of TRP4, amino acid residues 688–759 and 786–848, were identified as being able to interact with CaM. The binding of CaM to both domains occurred only in the presence of Ca2+ concentrations above 10µM, with half maximal binding occurring at 16.6µM (domain 1) and 27.9µM Ca2+ (domain 2). Synthetic peptides, encompassing the two putative CaM binding sites within these domains and covering amino acid residues 694–728 and 829–853, interacted directly with dansyl–CaM with apparent Kd values of 94–189nM. These results indicate that TRP4/Ca2+-CaM are parts of a signalling complex involved in agonist-induced Ca2+ entry.


2011 ◽  
Vol 286 (22) ◽  
pp. 19410-19416 ◽  
Author(s):  
Simone Kühnle ◽  
Ulrike Kogel ◽  
Sandra Glockzin ◽  
Andreas Marquardt ◽  
Aaron Ciechanover ◽  
...  

Deregulation of the ubiquitin-protein ligase E6AP contributes to the development of the Angelman syndrome and to cervical carcinogenesis suggesting that the activity of E6AP needs to be under tight control. However, how E6AP activity is regulated at the post-translational level under non-pathologic conditions is poorly understood. In this study, we report that the giant protein HERC2, which is like E6AP a member of the HECT family of ubiquitin-protein ligases, binds to E6AP. The interaction is mediated by the RCC1-like domain 2 of HERC2 and a region spanning amino acid residues 150–200 of E6AP. Furthermore, we provide evidence that HERC2 stimulates the ubiquitin-protein ligase activity of E6AP in vitro and within cells and that this stimulatory effect does not depend on the ubiquitin-protein ligase activity of HERC2. Thus, the data obtained indicate that HERC2 acts as a regulator of E6AP.


2021 ◽  
Vol 22 (16) ◽  
pp. 8964
Author(s):  
Sara Ragucci ◽  
Daniela Bulgari ◽  
Nicola Landi ◽  
Rosita Russo ◽  
Angela Clemente ◽  
...  

Quinoin is a type 1 ribosome-inactivating protein (RIP) we previously isolated from the seeds of pseudocereal quinoa (Chenopodium quinoa) and is known as a functional food for its beneficial effects on human health. As the presence of RIPs in edible plants could be potentially risky, here we further characterised biochemically the protein (complete amino acid sequence, homologies/differences with other RIPs and three-dimensional homology modeling) and explored its possible defensive role against pathogens. Quinoin consists of 254 amino acid residues, without cysteinyl residues. As demonstrated by similarities and homology modeling, quinoin preserves the amino acid residues of the active site (Tyr75, Tyr122, Glu177, Arg180, Phe181 and Trp206; quinoin numbering) and the RIP-fold characteristic of RIPs. The polypeptide chain of quinoin contains two N-glycosylation sites at Asn115 and Asp231, the second of which appears to be linked to sugars. Moreover, by comparative MALDI-TOF tryptic peptide mapping, two differently glycosylated forms of quinoin, named pre-quinoin-1 and pre-quinoin-2 (~0.11 mg/100 g and ~0.85 mg/100 g of seeds, respectively) were characterised. Finally, quinoin possesses: (i) strong antiviral activity, both in vitro and in vivo towards Tobacco Necrosis Virus (TNV); (ii) a growth inhibition effect on the bacterial pathogens of plants; and (iii) a slight antifungal effect against two Cryphonectria parasitica strains.


Sign in / Sign up

Export Citation Format

Share Document