scholarly journals Non-equilibrium thermodynamics model for calculating diffusion fluxes under phase transformations in alloy steels

Author(s):  
S. V. Bobyr

The phase transformations in alloyed iron-carbon alloys is largely related to diffusion of components, foremost to the carbon. For the analysis of diffusive processes in alloy steels, it is possible to use the mathematical methods of non-equilibrium thermodynamics. The equation for the diffusive fluxes of the system contains unknown in general case of coefficients activity of elements and vacancies, and their derivatives for to the concentrations, that extraordinarily makes it difficult being of values of cross coefficients. In the article a non-equilibrium thermodynamics methodology of calculation of diffusive fluxes at presence of two phases in alloy steels is described. It allows one to calculate both direct- and cross coefficients in the Onsager equations. Formulas for calculation of thermodynamics forces in the alloy steel – for iron, alloying element of substitution – chrome, of element of introduction – carbon and vacancies, are presented. Common expressions are suggested for calculation of cross-factors, motive forces and fluxes in the Onsager’s equations for a multicomponent thermodynamic system. The example of using the developed model to find changes in concentrations and diffusion fluxes over time is given. For the model system used, it was established that at the stage of predominant diffusion of carbon in the alloy steel, cementite inclusions with a size of about 18 nm are formed rather quickly (within ~ 200 s). The technique developed in the article allows one to perform diffusion kinetics calculations in multicomponent thermodynamic systems, which are also iron-carbon alloys and to control the size of the phases formed, for example, of carbide nanoparticles.

1983 ◽  
Vol 21 ◽  
Author(s):  
J. W. Morris

ABSTRACTThis paper is intended to describe and illustrate the use of phase transformations in the design of new alloy steels. The general method of alloy design is described. Two examples are discussed: the development of new ferritic structural steels for use at cryogenic temperature, and the development of ‘dual phase’ steels for automotive use.


2019 ◽  
Vol 488 (3) ◽  
pp. 272-276
Author(s):  
V. V. Malakhov ◽  
V. N. Parmon

The application of the general principles of the non-equilibrium thermodynamics and stoichiography allows obtaining novel information on the solid-phase transformations happening in multielement and heterophase substances and materials. Without the solid-phase standards, the use of stoichiography allows detecting, identifying and quantitative determining known and unknown crystalline and amorphous phases being of constant or variable composition. For the first time, reliable results concerning evolution of solid products during preparation of the Mo-V-Te-Nb-O catalyst of propane ammoxidation are presented.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carine G. van der Boog ◽  
Henk A. Dijkstra ◽  
Julie D. Pietrzak ◽  
Caroline A. Katsman

AbstractDouble-diffusive processes enhance diapycnal mixing of heat and salt in the open ocean. However, observationally based evidence of the effects of double-diffusive mixing on the global ocean circulation is lacking. Here we analyze the occurrence of double-diffusive thermohaline staircases in a dataset containing over 480,000 temperature and salinity profiles from Argo floats and Ice-Tethered Profilers. We show that about 14% of all profiles contains thermohaline staircases that appear clustered in specific regions, with one hitherto unknown cluster overlying the westward flowing waters of the Tasman Leakage. We estimate the combined contribution of double-diffusive fluxes in all thermohaline staircases to the global ocean’s mechanical energy budget as 7.5 GW [0.1 GW; 32.8 GW]. This is small compared to the estimated energy required to maintain the observed ocean stratification of roughly 2 TW. Nevertheless, we suggest that the regional effects, for example near Australia, could be pronounced.


Soft Matter ◽  
2019 ◽  
Vol 15 (22) ◽  
pp. 4467-4475 ◽  
Author(s):  
Mattia Bacca ◽  
Omar A. Saleh ◽  
Robert M. McMeeking

We propose a theory based on non-equilibrium thermodynamics to describe the mechanical behavior of an active polymer gel created by the inclusion of molecular motors in its solvent.


1993 ◽  
Vol 15 (8) ◽  
pp. 1063-1086 ◽  
Author(s):  
Z. Banach ◽  
S. Piekarski

Sign in / Sign up

Export Citation Format

Share Document