scholarly journals Beta thalassemia gene therapy using lentiviral vectors

2020 ◽  
Vol 30 (4) ◽  
pp. 341-351
Author(s):  
Mohammad Ali Khosravi ◽  
◽  
Maryam Abbasalipour ◽  
Sirous Zeinali ◽  
Morteza Karimipoor ◽  
...  
2007 ◽  
Vol 18 (6) ◽  
pp. 483-489 ◽  
Author(s):  
Nicola J. Philpott ◽  
Adrian J. Thrasher

Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1311 ◽  
Author(s):  
Alexis Duvergé ◽  
Matteo Negroni

Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.


2008 ◽  
Vol 40 (2) ◽  
pp. 268
Author(s):  
Africa Gonzalez-Murillo ◽  
M. Luz Lozano ◽  
Javier Molina-Estevez ◽  
Elena Almarza ◽  
Montserrat Aldea ◽  
...  

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. SCI-16-SCI-16
Author(s):  
Mitchell J Weiss

Genetic forms of anemia caused by HBB gene mutations that impair beta globin production are extremely common worldwide. The resultant disorders, mainly sickle cell disease (SCD) and beta-thalassemia, cause substantial morbidity and early mortality. Treatments for these diseases include medical therapies and bone marrow transplantation (BMT), which can be curative. However, medical therapies are suboptimal and BMT is associated with serious toxicities, particularly because HLA-matched allogeneic sibling donors are not available for most patients. Thus, new therapies are urgently needed for millions of affected individuals. Gene therapy offers great promise to cure SCD and beta thalassemia and emerging genome editing technologies represent a new form of gene therapy. Approaches to cure SCD and beta-thalassemia via genome editing include: 1) Correction of HBB mutations by homology directed repair (HDR); 2) use of non-homologous end joining (NHEJ) to activate gamma globin production and raise fetal hemoglobin (HbF) levels; 3) NHEJ to disrupt alpha-globin genes (HBA1 or HBA2) and thereby alleviate globin chain imbalance in intermediately severe forms of beta thalassemia. Challenges for these approaches include selection of the most effective genome editing tools, optimizing their delivery to hematopoietic stem cells (HSCs), improving specificity and better understanding potential off target effects, particularly those that are biologically relevant. Technologies for genome editing are advancing rapidly and being tested in preclinical models for HBB-mutated disorders. Ultimately, however, the best strategies can only be identified in clinical trials. This will require close collaborations between basic/translational researchers who study genome editing, clinical hematologists and collaboration between experts in academia and the bio-pharmaceutical industry. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document