scholarly journals Seismic Analysis of an Offshore Structure in Persian Gulf Utilizing a Physical Model

2019 ◽  
Vol 11 (Winter and Spring 2019) ◽  
pp. 21-31
Author(s):  
Farhad Hosseinlou ◽  
Hamid Hokmabady ◽  
Alireza Mojtahedi ◽  
Samira Mohammadyzadeh ◽  
◽  
...  
Author(s):  
Syed Danish Hasan ◽  
Nazrul Islam ◽  
Khalid Moin

The response of offshore structures under seismic excitation in deep water conditions is an extremely complex phenomenon. Under such harsh environmental conditions, special offshore structures called articulated structures are feasible owing to reduced structural weight. Whereas, conventional offshore structure requires huge physical dimensions to meet the desired strength and stability criteria, therefore, are uneconomical. Articulated offshore towers are among the compliant offshore structures. These structures consist of a ballast chamber near the bottom hinge and a buoyancy chamber just below the mean sea level, imparting controlled movement against the environmental loads (wave, currents, and wind/earthquake). The present study deals with the seismic compliance of a double-hinged articulated offshore tower to three real earthquakes by solving the governing equations of motion in time domain using Newmark’s-β technique. For this purpose Elcentro 1940, Taft 1952 and Northridge 1994 earthquake time histories are considered. The tower is modeled as an upright flexible pendulum supported to the sea-bed by a mass-less rotational spring of zero stiffness while the top of it rigidly supports a deck in the air (a concentrated mass above water level). The computation of seismic and hydrodynamic loads are performed by dividing the tower into finite elements with masses lumped at the nodes. The earthquake response is carried out by random vibration analysis, in which, seismic excitations are assumed to be a broadband stationary process. Effects of horizontal ground motions are considered in the present study. Monte Carlo simulation technique is used to model long crested random wave forces. Effect of sea-bed shaking on hydrodynamic modeling is considered. The dynamic equation of motion is formulated using Lagrangian approach, which is based on energy principle. Nonlinearities due to variable submergence and buoyancy, added mass associated with the geometrical non-linearities of the system are considered. The results are expressed in the form of time-histories and PSDFs of deck displacement, rotational angle, base and hinge shear, and the bending moment. The outcome of the response establishes that seismic sea environment is an important design consideration for successful performance of hinges, particularly, if these structures are situated in seismically active zones of the world’s ocean.


1985 ◽  
pp. 53-67 ◽  
Author(s):  
J. A. Vogel ◽  
U. Stelwagen ◽  
R. Breeuwer

1917 ◽  
Vol 83 (2146supp) ◽  
pp. 100-101
Author(s):  
Edwin E. Calverley

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
N Ebrahimi ◽  
M Moein ◽  
S Moein

2009 ◽  
Vol 2 (1) ◽  
pp. 75-96 ◽  
Author(s):  
Helene von Bismarck
Keyword(s):  

Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Sign in / Sign up

Export Citation Format

Share Document