scholarly journals Photocatalytic Activity of ZnO Nanoparticles (Bare, Doped and Co-doped with Mg and La) in the Removal of Rhodamine B from Aqueous Solutions by UVC Irradiation

2020 ◽  
Vol 11 (3) ◽  
pp. 338-353
Author(s):  
B Khanizadeh ◽  
M Khosravi ◽  
M.A* Behnajady ◽  
A Shamel ◽  
B Vahid ◽  
...  
2015 ◽  
Vol 12 (5/6/7) ◽  
pp. 416
Author(s):  
Nguyen Xuan Dung ◽  
Luu Tien Hung ◽  
Steffen Schulze ◽  
Michael Hietschold ◽  
Harry Podlesak ◽  
...  

2019 ◽  
Vol 64 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Behnam Khanizadeh ◽  
Morteza Khosravi ◽  
Mohammad A. Behnajady ◽  
Ali Shamel ◽  
Behrouz Vahid

In this study, La and Mg doped, and co-doped ZnO nanoparticles were prepared using the sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physisorption techniques. The XRD results indicated that the prepared nanoparticles can be well adopted by the hexagonal wurtzite structure crystal and there are no second impurity peaks. Studies of the FESEM, EDX and TEM have shown that the samples have uniform spherical-like morphology with a homogenous distribution. The incorporation of La and Mg into the ZnO lattice had no effect on the morphology of the nanoparticles, but a reduction in the size of the grains (≈ 14 nm to ≈ 7 nm) was observed due to the insertion of these ions. The results of N2 physisorption indicated that there was an increase in BET surface area and pore volume for doped and co-doped samples. The results of DRS showed an increase in band gap energy and a blue shift at the absorption edge for doped and co-doped samples. The photocatalytic activity of the prepared catalysts was evaluated in the removal of RhB under UVA irradiation. The results showed that Mg5%-La5%/ZnO had the highest photoactivity (91.18 %) among all samples.


2021 ◽  
Author(s):  
P. Baskaran ◽  
A. Pramothkumar ◽  
Mani P

Abstract In the present report, synthesis of pure, Nd-doped (1 wt.%) and Nd/Sm (1 wt.%) co-doped Zinc Oxide (ZnO) Nanoparticles (NPs) by using simple co-precipitation method. PXRD pattern of all the synthesized samples exposes the hexagonal crystal structure of ZnO NPs without any impurity. The various functional groups presented in the synthesized samples were analyzed by FT-IR studies. From UV-Vis DRS spectra, the band gap was found to be 2.81 eV, 2.90 and 3.10 eV respectively for pure, Nd-doped and Nd-Sm co-doped ZnO NPs. PL spectrum displays the broad emission at 393and 450 nm for all the synthesized samples. The agglomeration of flower-like morphology of pure ZnO NPs, flake-like structure of Nd-doped and rod-like morphology of Nd/Sm co-doped ZnO NPs were examined by SEM. Photocatalytic activity of the prepared samples for dye degradation of Acid Orange 7 (AO-7) and Acid Red 13 (AR-13) was studied under UV light. The result revealed that, the Nd/Sm co-doped ZnO NPs found to have efficient degradation candidate materials.


Author(s):  
Sivakumar Krishnamoorthy ◽  
Dharani M.

Zinc oxide (ZnO) nanoparticles prepared using simple co-precipitation method are characterized and photocatalytic activity is tested on the degradation of methylene blue and rhodamine B organic pollutants. Morphological and structural properties of synthesized nanomaterial have been characterized using FESEM, EDAX spectroscopy, and XRD, while UV-visible DRS spectroscopy and photoluminescence have been used to understand their optical properties. The photocatalytic behaviour of synthesized nanoparticles was evaluated on the degradation of methylene blue (MB) and rhodamine B (RhB) organic pollutants under solar light irradiation. The highest degradation was achieved for MB (100%) over RhB (96%). Preliminary investigation shows the effective degradation of organic pollutants by ZnO nanoparticles.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yong-Fang Li ◽  
Ming Zhang ◽  
Dan-Lu Guo ◽  
Fei-Xia He ◽  
Ying-Zhu Li ◽  
...  

Well-defined nanosheet-assembled (BiOCl)x(ZnO)1−xnanoflowers were synthesized by a solvothermal method. It was found that ZnO nanoparticles were anchored on the flower-like BiOCl nanostructures, as demonstrated by varying the initial compositions of the Bi precursor and the volume ratios of mixed solvents (ethylene glycol to water). The as-prepared (BiOCl)0.6(ZnO)0.4nanocomposites showed enhanced photocatalytic activity toward rhodamine B degradation under ultraviolet (UV) irradiation. And the photocatalytic mechanism was discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document