scholarly journals Determination of Flow Patterns in Vertical Upward Two-Phase Flow Channel via Void Fraction Profile

2019 ◽  
Vol 12 (2) ◽  
pp. 474-483
Author(s):  
M. A. Zubir ◽  
R. Ramli ◽  
M. Z. Zainon ◽  
◽  
◽  
...  
Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.


Author(s):  
A. A´lvarez del Castillo ◽  
E. Santoyo ◽  
O. Garci´a-Valladares ◽  
P. Sa´nchez-Upton

The modeling of heat and fluid flow inside two-phase geothermal wells is a vital task required for the study of the production performance. Gas void fraction is one of the crucial parameters required for a better prediction of pressure and temperature gradients in two-phase geothermal wells. This parameter affects the correct matching between simulated and measured data. Modeling of two-phase flow inside wells is complex because two phases exist concurrently (exhibiting various flow patterns that depend on their relative concentrations, the pipe geometry, and the mass flowrate). A reliable modeling requires the precise knowledge of the two-phase flow patterns (including their transitions and some flow parameters). In this work, ten empirical correlations were used to estimate the gas void fraction in vertical-inclined pipes, and to evaluate their effect on the prediction of two-phase flow characteristics of some Mexican geothermal wells. High quality downhole pressure/ temperature logs collected from four producing geothermal wells were studied [Los Azufres, Mich. (Az-18); Los Humeros, Pue. (H-1), and Cerro Prieto, B.C. (M-90 and M-201)]. The pressure/ temperature gradients were simulated using an improved version of the wellbore simulator GEOPOZO, and the gas void fraction correlations. The simulated results were statistically compared with measured field data.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
M. Giraudeau ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

Momentum variation in two-phase flow generates significant low frequency forces, capable of producing unwanted and destructive vibrations in nuclear or petroleum industries. Two-phase flow-induced forces in piping were previously studied over a range of diameters from 6 mm to 70 mm in different piping element geometries, such as elbows, U-bends, and tees. Dimensionless models were then developed to estimate the rms forces and generate vibration excitation force spectra. It was found that slug flow generates the largest forces due to the large momentum variation between Taylor bubbles and slugs. The present study was conducted with a 52 mm diameter U-bend tube carrying a vertical upward flow. Two-phase flow-induced forces were measured. In addition, two-phase flow parameters, such as the local void fraction, bubble size and velocity, and slug frequency were studied to understand the relationship between the force spectra and the two-phase flow patterns. A new two-phase flow pattern map, based on existing transition models and validated using our own local void fraction measurements and force spectra, is proposed. This paper also presents a comparison of the present dimensionless forces with those of previous studies, thus covers a wide range of geometries and Weber numbers. Finally, a dimensionless spectrum is proposed to correlate forces with large momentum variations observed for certain flow patterns.


1991 ◽  
Vol 95 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Y. W. Wang ◽  
B. S. Pei ◽  
W. K. Lin

Author(s):  
J. L. H. Faccini ◽  
J. Su ◽  
G. D. Harvel ◽  
J. S. Chang

In this paper, we present a hybrid type contrapropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig at the Nuclear Engineering Institute (IEN)/CNEN, Brazil. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with the Mandhane et al.’s experimental and Lightstone et al.’s numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A contrapropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section assembling at IEN is presented. Other flow parameters can be deduced by processing the signals obtained by the CPTU ultrasonic flowmeter and the pulse-echo generator-receiver (TATIU system).


2020 ◽  
Vol 846 ◽  
pp. 289-295
Author(s):  
Sukamta ◽  
Sudarja

Two-phase flow has been used in so many industrial processes, such as boilers, reactors, heat exchangers, geothermal and others. Some parameters which need to be studied include flow patterns, void fractions, and pressure changes. Research on void fractions aims to determine the composition of the gas and liquid phases that will affect the nature and value of the flow property. The purpose of this study is to find out the characteristics of the void fraction of various patterns that occurs and to determine the characteristics of the velocity, length, and frequency of bubbly and plug. Data acquisition was used to convert the data from analog to digital so that it can be recorded, stored, processed, and analyzed. High-speed camera Nikon type J4 was used to record the flow. The condition of the study was adiabatic with variation of superficial gas velocity (JG), superficial fluid velocity (JL), and also working fluid. To determine the void fraction by using the digital image processing method. The results of the study found that the flow patterns which occurred in this study were bubbly, plug, annular, slug-annular and churn flows. It also showed that the void fraction value is determined by the superficial velocity of the liquid and air. The higher the superficial velocity of the air, the lower the void fraction value.


Sign in / Sign up

Export Citation Format

Share Document