A Study on Adaptive Modification Algorithm for Disturbance Vibration Control System Design

2020 ◽  
Vol 25 (2) ◽  
pp. 57-62
Author(s):  
Ui-Jong Youm
2012 ◽  
Vol 5 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Seiji SAITO ◽  
Mingcong DENG ◽  
Mamoru MINAMI ◽  
Changan JIANG ◽  
Akira YANOU

1999 ◽  
Author(s):  
Ching-Fang Lin ◽  
Ping-An Bao ◽  
Sarah Braasch

1994 ◽  
Vol 6 (4) ◽  
pp. 304-311
Author(s):  
Kenzo Nonami ◽  
◽  
Qi-fu Fan ◽  

The <I>H</I>∞ control theory is currently the most powerful method for robust control theory, and is useful as well as practical because a great amount of software related to computer-aided control system design is available. However, it has some disadvantages in that the <I>H</I>∞ control system is a conservative one and cannot deal with robust performance. This is due to maximum singular values. Doyle proposed a structured singular value instead of a maximum singular value. This is called ∞ synthesis theory and actively deals with robust performance using D-K iteration. This paper is concerned with computeraided design of active vibration control systems based on the μ synthesis theory. First, the paradigm of the μ synthesis theory is described concerning μ, robust performance, and D-K iteration. Next, the relationships between the μ controller, robust performance, nominal performance, and robust stability are discussed for vibration control systems.


Author(s):  
Mitsuhiro Ichihara ◽  
Hideo Shida ◽  
Takahito Sagane ◽  
Hiroshi Tajima ◽  
Muneharu Saigou ◽  
...  

This paper proposed a new modeling technique and control system design of a flexible rotor using active magnetic bearings (AMB) for motion and vibration control. The purpose of the research was to pass through a critical speed and achieve high-speed rotation. To achieve this, it is necessary to control both vibration and motion. Even though reduced order physical model [1] that we used before is available technique in expressing vibration, this technique cannot express motion. Thus we propose an extended reduced order physical model [2] that can simultaneously express motion and vibration. Further, by using the model we apply the design of a new controller that combined proportional integral derivative (PID) with linear quadratic (LQ) control to a flexible rotor. The procedure we propose is verified by simulations as being effective for a flexible rotor.


Sign in / Sign up

Export Citation Format

Share Document