scholarly journals ANALISIS TITIK EKUILIBRIUM ENDEMIK MODEL EPIDEMI SEIV DENGAN LAJU PENULARAN NONLINEAR

2010 ◽  
Vol 5 (2) ◽  
Author(s):  
Nurul Hikmah

Abstrak. Pada paper ini diberikan model epidemi SEIV dengan laju penularan nonlinear. Model ini menjelaskan tentang efek psikologi dari perubahan perilaku individu yang rentan ketika jumlah individu yang terinfeksi mengalami peningkatan. Dalam paper ini akan dilakukan analisis global dari model epidemi SEIV dan menyelidiki kestabilan global titik ekuilibrium endemik , selanjutnya diperoleh bahwa titik ekuilibrium endemik model epidemi SEIV stabil global. Kata Kunci : SEIV, titik ekuilibrium, kestabilan Abstract. In this paper, we consider a SEIV epidemic model with nonlinear incidence rate. This model describes the psychological effect of the behavioral change of susceptible individuals when the number of infectious individuals increases. By carrying out a global analysis of the model and studying the globally stability of the endemic equilibrium in this paper, we show that the endemic equilibrium of a SEIV epidemic model is globally stable. Key words: SEIV, equilibrium point, stability

2017 ◽  
Vol 10 (02) ◽  
pp. 1750019 ◽  
Author(s):  
Lifei Zheng ◽  
Xiuxiang Yang ◽  
Liang Zhang

We study an SEIRS epidemic model with an isolation and nonlinear incidence rate function. We have obtained a threshold value [Formula: see text] and shown that there is only a disease-free equilibrium point, when [Formula: see text] and an endemic equilibrium point if [Formula: see text]. We have shown that both disease-free and endemic equilibrium point are globally stable.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Sanling Yuan ◽  
Bo Li

We study an epidemic model with a nonlinear incidence rate which describes the psychological effect of certain serious diseases on the community when the ratio of the number of infectives to that of the susceptibles is getting larger. The model has set up a challenging issue regarding its dynamics near the origin since it is not well defined there. By carrying out a global analysis of the model and studying the stabilities of the disease-free equilibrium and the endemic equilibrium, it is shown that either the number of infective individuals tends to zero as time evolves or the disease persists. Computer simulations are presented to illustrate the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jihad Adnani ◽  
Khalid Hattaf ◽  
Noura Yousfi

We investigate a stochastic SIR epidemic model with specific nonlinear incidence rate. The stochastic model is derived from the deterministic epidemic model by introducing random perturbations around the endemic equilibrium state. The effect of random perturbations on the stability behavior of endemic equilibrium is discussed. Finally, numerical simulations are presented to illustrate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


Author(s):  
Jianpeng Wang ◽  
Binxiang Dai

In this paper, a reaction–diffusion SEI epidemic model with nonlinear incidence rate is proposed. The well-posedness of solutions is studied, including the existence of positive and unique classical solution and the existence and the ultimate boundedness of global solutions. The basic reproduction numbers are given in both heterogeneous and homogeneous environments. For spatially heterogeneous environment, by the comparison principle of the diffusion system, the infection-free steady state is proved to be globally asymptotically stable if [Formula: see text] if [Formula: see text], the system will be persistent and admit at least one positive steady state. For spatially homogenous environment, by constructing a Lyapunov function, the infection-free steady state is proved to be globally asymptotically stable if [Formula: see text] and then the unique positive steady state is achieved and is proved to be globally asymptotically stable if [Formula: see text]. Finally, two examples are given via numerical simulations, and then some control strategies are also presented by the sensitive analysis.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Sign in / Sign up

Export Citation Format

Share Document