scholarly journals Electrochemical Behavior of Metamitron Herbicide at the Interface of Two Immiscible Electrolyte Solutions

2017 ◽  
Vol 58 (3) ◽  
Author(s):  
Alma Gricel Reyes-Reyes ◽  
Judith Amador-Hernández ◽  
Miguel Velázquez-Manzanares

<p>The electrochemical behavior of the metamitron herbicide at the water|1,2-dichloroethane interface was studied by means of cyclic voltammetry and Electrochemical Impedance Spectroscopy. The results show that metamitron extraction across the interface was pH dependent. The curves capacitance-potential shown that the presence of a lipid monolayer inhibits the metamitrone transport across the interface. In this paper the equilibrium partition of metamitron across the interface of two immiscible electrolyte solutions is discussed.</p>

The aim of this work is to introduce bacteria into the matrix of natural phosphate to catalyze the phenol oxidation in the wastewater.This electrode, designated subsequently by bacteria-NP-CPE, Showed stable response and was characterized with voltammeter methods, as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and DRX. The experimental results revealed that the prepared electrode could be a feasible for degradation of hazardous phenol pollutants in the wastewater.


CORROSION ◽  
10.5006/3254 ◽  
2019 ◽  
Vol 75 (11) ◽  
pp. 1339-1353
Author(s):  
Maryam Eslami ◽  
Flavio Deflorian ◽  
Caterina Zanella

The electrochemical behavior of a low silicon aluminum alloy cast by the conventional and rheo-high-pressure die cast processes is evaluated using polarization test and electrochemical impedance spectroscopy in 0.01 M, 0.05 M, 0.1 M, and 0.6 M sodium chloride solutions. Compared to the conventional high-pressure die cast process, rheocasting introduces some alterations in the microstructure including the presence of aluminum grains with different sizes, formed at different solidification stages. According to the results of the anodic polarization test, conventional cast and rheocast samples show similar breakdown potentials. However, the rheocast samples present enhanced oxygen reduction kinetics compared to the conventional cast sample. Based on scanning electron microscopy examinations, localized microgalvanic corrosion is the main corrosion mechanism for both alloys and it initiates at the interface of aluminum with iron-rich intermetallic particles which are located inside the eutectic regions. The corrosion further develops into the eutectic area. Although the rate of the cathodic reaction can be influenced by the semisolid microstructure, according to the results of anodic polarization and electrochemical impedance spectroscopy tests, the corrosion behavior is not meaningfully affected by the casting process.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Juan Zhou ◽  
Qiao Chen ◽  
Li-lan Wang ◽  
Yong-hua Wang ◽  
Ying-zi Fu

The paper reported that a simple chiral selective interface constructed by (1R, 2R)-2-amino-1, 2-diphenyl ethanol had been developed to discriminate tryptophan enantiomers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characteristic analysis of the electrode. The results indicated that the interface showed stable and sensitive property to determine the tryptophan enantiomers. Moreover, it exhibited the better stereoselectivity for L-tryptophan than that for D-tryptophan. The discrimination characteristics of the chiral selective interface for discriminating tryptophan enantiomers, including the response time, the effect of tryptophan enantiomers concentration, and the stability, were investigated in detail. In addition, the chiral selective interface was used to determine the enantiomeric composition of L- and D-tryptophan enantiomer mixtures by measuring the relative change of the peak current as well as in pure enantiomeric solutions. These results suggested that the chiral selective interface has the potential for enantiomeric discrimination of tryptophan enantiomers.


Sign in / Sign up

Export Citation Format

Share Document