scholarly journals Removal of Color and Chemical Oxygen Demand Using a Coupled Coagulation-Electrocoagulation-Ozone Treatment of Industrial Wastewater that Contains Offset Printing Dyes

Author(s):  
Gabriela Roa-Morales ◽  
Carlos Barrera-Díaz ◽  
Patricia Balderas-Hernández ◽  
Francisco Zaldumbide-Ortiz ◽  
Horacio Reyes Perez ◽  
...  

Industrial offset printing processes generate wastewater with highly colored obtaining values of 5x10<sup>6</sup> Pt-Co units and great values of chemical oxygen demand (COD) 5.3x10<sup>-5</sup> mg L<sup>-1</sup>. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L<sup>-1</sup> AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35% COD.

2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

2018 ◽  
Vol 31 (2) ◽  
pp. 97-107
Author(s):  
Ahmed Hamdani ◽  
Mohammed Mountadar ◽  
Omar Assobhei

In order to study the simultaneous removal of nitrate and organic matter from a dairy effluent containing 670 mg∙L-1 of nitrate (NO3--N) and 5 760 mg∙L-1 of dissolved chemical oxygen demand (CODd), denitrification in a laboratory scale bioreactor consisting of an immersed bacterial bed colonized by an heterotrophic denitrifying flora (HDF) selected for NO3- reduction, COD consumption and adapted to grow on an effluent produced by a dairy industry was investigated. The obtained results indicated that at the optimal conditions of temperature (30°C), pH (7), COD/NO3--N ratio (5), the operation lasted 108h with total reduction of nitrate in 72h, no nitrite accumulation, and 92% of soluble COD removal in 96h. This indicates that the biodenitrification was accompanied with a high efficiency of matter organic removal as an electron donor, and thereby satisfies the applicable standards.


2010 ◽  
Vol 61 (10) ◽  
pp. 2557-2561 ◽  
Author(s):  
M. K. Vilve ◽  
M. E. T. Sillanpää

This paper presents a summary of degrading organic compounds of nuclear laundry water by ozonation in different conditions of pH, hydrogen peroxide and ultraviolet radiation. The degradation of organic compounds was analysed by chemical oxygen demand (COD), total organic carbon (TOC) and biochemical oxygen demand (BOD). The optimal degradation conditions were at pH 7 with ozone, UV radiation and hydrogen peroxide addition. The transfer of ozone increased significantly, thus resulting in decreased treatment time compared to ozone treatment alone. The reductions of COD, TOC and BOD were 46%, 32% and 70%, respectively.


2018 ◽  
Vol 78 (2) ◽  
pp. 279-289 ◽  
Author(s):  
M. Sahana ◽  
H. Srikantha ◽  
S. Mahesh ◽  
M. Mahadeva Swamy

Abstract The efficiency of chemical oxygen demand (COD) and color removal from raw coffee processing wastewater (CPWW) using batch electrochemical coagulation (BECC) treatment process using stainless steel (SS) and iron (Fe) electrode combinations are investigated. Of the combinations: four SS, four Fe, Fe-Fe-SS-SS, Fe-SS-Fe-SS, SS-SS-Fe-Fe, and SS-Fe-SS-Fe; four SS electrodes operated at 23 V having 120 A/m2 current density was found as a good operating condition to achieve ∼87% COD removal from its initial COD of 1,984 mg/L and corresponding color removal of 97.1% (initial color 7,000 PCU). The second best electrode combination, SS-SS-Fe-Fe, had COD and color removals of 75% and 91%. When using polyaluminum chloride (PAC) as aid with different dosages of 20–100 mg/L, 50 mg/L PAC showed maximum COD and color removals of 80% and 92%. Comparison of proximate and ultimate analyses of various solid fuels with CPWW ECC sludge showed its usefulness as a soil supplement and as an adsorbent for reutilization. The solid residue obtained after BECC was characterized using energy dispersive X-ray spectroscopy and other analyses. Summarizing the results, it was concluded that BECC can be effectively used for maximum removal of organics from raw CPWW with clean water reclamations of up to ∼90% using ECC as a novel treatment technique.


2002 ◽  
Vol 33 (15-18) ◽  
pp. 3443-3447 ◽  
Author(s):  
Ignacio Gómez ◽  
Roberto Ivorra ◽  
Ana Pérez ◽  
Ana María Santacruz ◽  
Juan Navarro ◽  
...  

Author(s):  
Mahmood Al Ramahi ◽  
Sándor Beszédes ◽  
Gábor Keszthelyi-Szabó

AbstractIndustrial wastewater is a growing environmental challenge due to its high concentrations of organics and its limited biological degradability. Up to date, however, no published work discussed industrial wastewater characterization, which is the focus of this study. Moreover, the effect of hydrothermal treatment on the chemical oxygen demand (COD) removal and the soluble chemical oxygen demand (SCOD) release was investigated in this work. Wastewater samples were collected from different industrial sites and characterized in order to determine their initial properties. It was summarized that the salinity of wastewater estimated by EC was relatively low, and its pH values were in the acceptable range. On the other hand, however, high values of sodium absorption ratio (SAR) were obtained in all samples post to hydrothermal treatment. Nonetheless, our results revealed higher SCOD release post to hydrothermal treatment suggesting better efficiency of COD removal obtained by this treatment technique.


Sign in / Sign up

Export Citation Format

Share Document