Direct imaging of electrocatalytic activity using infrared sensing during water-splitting and CO2 reduction

Author(s):  
Hugo-Pieter Iglesias van Montfort ◽  
Thomas Burdyny
2020 ◽  
Vol 11 (2) ◽  
pp. 458-466
Author(s):  
D. V. Fominski ◽  
V. N. Nevolin ◽  
R. I. Romanov ◽  
V. Yu. Fominski ◽  
O. V. Komleva ◽  
...  

2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


2021 ◽  
Vol 127 ◽  
pp. 114562
Author(s):  
Yi-min Ding ◽  
Xiaomin Nie ◽  
Huilong Dong ◽  
Nopporn Rujisamphan ◽  
Youyong Li

2017 ◽  
Vol 198 ◽  
pp. 397-407 ◽  
Author(s):  
Tomoaki Takayama ◽  
Ko Sato ◽  
Takehiro Fujimura ◽  
Yuki Kojima ◽  
Akihide Iwase ◽  
...  

CuGaS2, (AgInS2)x–(ZnS)2−2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9–(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO–TiO2 composite) were only dispersed in water under 1 atm of CO2.


2018 ◽  
Vol 6 (7) ◽  
pp. 3224-3230 ◽  
Author(s):  
Li-Ming Cao ◽  
Jia-Wei Wang ◽  
Di-Chang Zhong ◽  
Tong-Bu Lu

The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy.


2018 ◽  
Vol 20 (8) ◽  
pp. 5936-5941 ◽  
Author(s):  
Ying Zhang ◽  
Xiaolong Zhang ◽  
Alan M. Bond ◽  
Jie Zhang

A Sn electrocatalyst for CO2 reduction to formate with enhanced selectivity has been developed based on a new substrate effect.


2018 ◽  
Vol 6 (24) ◽  
pp. 11078-11104 ◽  
Author(s):  
Sundaram Chandrasekaran ◽  
Chris Bowen ◽  
Peixin Zhang ◽  
Zheling Li ◽  
Qiuhua Yuan ◽  
...  

The fundamental aspects, photocatalytic applications and ways to enhance the performance of spinels are systematically reviewed in this paper.


Sign in / Sign up

Export Citation Format

Share Document