scholarly journals Blood Glucose Detection Using 3-LEDs: Analytical Model

2021 ◽  
Vol 15 ◽  
pp. 613
Author(s):  
Bruna Gabriela Pedro ◽  
Pedro Bertemes Filho

Calibration of non-invasive blood glucose measuring devices have an important role in the routine of people with diabetes. Continuous monitoring is one of the most efficient manner to control the disease. Besides the errors associated with the user, the calibration of such devices is the key point for obtaining reliable data. Researchers have failed to correlate the 2 near-infrared-light wavelength response from skin with the blood glucose level and then use it for diagnosing both upper and lower glycaemia status. The aim of this article is to purpose a mathematical model for calculating the blood glucose level using 3-LEDs with different wavelengths. It is presented and demonstrated all equations involved by using the theory of absorption of light by photoplethysmography. The final proposed equation can be calculated without using prior data obtained from patient. It can be concluded that it is possible to reduce the necessity of using calibration processes before acquiring data by a non-invasive device.

2021 ◽  
Vol 5 (1) ◽  
pp. 14-25
Author(s):  
Nurul Fadhilah ◽  
Erfiani Erfiani ◽  
Indahwati Indahwati

The calibration method is an alternative method that can be used to analyze the relationship between invasive and non-invasive blood glucose levels. Calibration modeling generally has a large dimension and contains multicolinearities because usually in functional data the number of independent variables (p) is greater than the number of observations (p>n). Both problems can be overcome using Functional Regression (FR) and Functional Principal Component Regression (FPCR). FPCR is based on Principal Component Analysis (PCA). In FPCR, the data is transformed using a polynomial basis before data reduction. This research tried to model the equations of spectral calibration of voltage value excreted by non-invasive blood glucose level monitoring devices to predict blood glucose using FR and FPCR. This study aimed to determine the best calibration model for measuring non-invasive blood glucose levels with the FR and FPCR. The results of this research showed that the FR model had a bigger coefficient determination (R2) value and lower Root Mean Square Error (RMSE) and Root Mean Square Error Prediction (RMSEP) value than the FPCR model, which was 12.9%, 5.417, and 5.727 respectively. Overall, the calibration modeling with the FR model is the best model for estimate blood glucose level compared to the FPCR model.


Author(s):  
Sachiko Kessoku ◽  
Katsuhiko Maruo ◽  
Shinpei Okawa ◽  
Kazuto Masamoto ◽  
Yukio Yamada

Various non-invasive glucose monitoring methods using near-infrared spectroscopy have been investigated although no method has been successful so far. Our previous study has proposed a new promising method utilizing numerically generated absorbance spectra instead of the experimentally acquired absorbance spectra. The method suggests that the correct estimation of the optical properties is very important for numerically generating the absorbance spectra. The purpose of this study is to measure the change in the optical properties of the skin with the change in the blood glucose level in vivo. By measuring the reflectances of light incident on the skin surface at two distances from the incident point, the optical properties of the skin can be estimated. The estimation is a kind of the inverse problem based on the simulation of light propagation in the skin. Phantom experiments have verified the method and in vivo experiments are to be performed.


Sign in / Sign up

Export Citation Format

Share Document