scholarly journals The Effect of a Hollow Fixture on Energy Dissipation of Ultrasonic Welded Carbon Fiber/Polyamide 66 Composite

2021 ◽  
Vol 100 (11) ◽  
pp. 371-378
Author(s):  
QIAN ZHI ◽  
◽  
XINRONG TAN ◽  
WENHUI LIU ◽  
YANG LIU ◽  
...  

In this study, the effect of the fixture configuration on ultrasonic welding of 4-mm-thick carbon-fiber-reinforced polyamide 66 (CF/PA66) composite with 30% mass fiber was evaluated. An analytical model to estimate the energy dissipation in the welding zone of lapped CF/PA66 samples was derived. Calculation analyses showed the energy dissipation at the faying interface of joints made from hollow-fixture ultrasonic welding (HFUSW) was about 25% higher than those made from conventional ultrasonic welding (CUSW) under the given process variables. This was primarily attributed to the almost total reflection at the workpiece-to-fixture interface in HFUSW. Experimental results indicated that the HFUSW joints exhibited a greater peak load and weld area than CUSW joints when the weld time was less than 2.1 s. The optimal weld time for CUSW and HFUSW processes were 2.1 and 1.7 s. When the weld time exceeded the optimal time, the joints occurred with a porous region, which was caused by thermal decomposition of the material, resulting in the decrease in peak load. Experimental and simulation results demonstrated the HFUSW process changed the propagation behavior of the ultrasonic wave and enhanced the energy dissipation at the faying interface. This study enriched the understanding of energy dissipation during ultrasonic welding of polymers.

Author(s):  
Yu-Hao Gao ◽  
Qian Zhi ◽  
Lei Lu ◽  
Zhong-Xia Liu ◽  
Pei-Chung Wang

In this study, weldability of ultrasonic welding of 4-mm-thick fiber carbon/nylon 66 composite in lap configuration was investigated. Ultrasonic welding tests were performed, and the weld appearance, microstructure, and fractography of the welded joints were examined using optical and scanning electron microscope. The transient temperatures near the faying surfaces and horn-workpiece interfaces were recorded to understand the weld growth mechanism. It was found that it is feasible to join 4-mm-thick lapped carbon fiber reinforced nylon 66 composite with ultrasonic welding. Under the ultrasonic vibration, the weld initiated and grew at the faying surfaces, while the weld indentation developed at the horn-workpiece interface. The pores observed in the regions between the heat-affected-zone (HAZ) and the fusion zone (FZ), and the severe weld indentation on the surface of upper workpieces decreased the loading capacity of the ultrasonic welded (UW) joints and caused the welded carbon/nylon 66 composite fractured prematurely. The strengths of the ultrasonic welds were determined by the balance of positive effect of the weld area and negative effects of the weld indentation and porosity near the FZ. To ensure the joint strength, it is necessary to apply the proper weld schedules (i.e., welding time and horn pressure) in ultrasonic welding of 4-mm-thick carbon fiber reinforced nylon 66 composite, which were developed based on the joint strength criterion.


Author(s):  
Qian Zhi ◽  
Jin-Ming Ma ◽  
Xin-Rong Tan ◽  
Zhong-Xia Liu ◽  
Zeng-Guo Tian ◽  
...  

2021 ◽  
Author(s):  
PAVANA PRABHAKAR ◽  
VINAY DAMODARAN, ◽  
ABARINATHAN PUSHPARAJ SUBRAMANIYAN

The long-term goal of this ONR funded project is to facilitate the design of architected composites that play a key role in damage tolerant and resilient structures. The main emphasis is on developing new composite structures with improved performance and durability as compared to conventional structural composites. To that end, we will present our work in detail on the following within the realm of sandwich composites along with a novel Machine Learning framework for stress prediction in composites: 1) Novel recoverable sandwich composite structures: Traditional sandwich cores such as foam core or honeycomb structures are good options for enabling lightweight and stiff structures. Although, these cores are known to dissipate energy under extreme conditions such as impact loading, they experience permanent damage. Here, our goal is to design core structures that undergo substantial deformation without accumulating damage and recover their original geometric configuration after the loading is removed. In contrast to a traditional foam or honeycomb structure, we have developed a multi-layer architected core design that facilitates significant deformation beyond the initial peak load, yielding a larger energy dissipation during impact and other extreme loading scenarios. We utilize the concept of pseudo-bistability of truncated cone unit cells to achieve elastic buckling for energy dissipation and shape recovery of core structures. 2) Tailoring of sandwich composite facings: Our objective is to establish the influence of fiber architecture on moisture diffusion pathways in FRPC facings for enabling damage tolerant facing designs. To that end, we have evaluated the moisture kinetics in FRPCs by developing micromechanics based computational models within FEM. We have explained the effect of tortuous diffusion pathways that manifest within FRPCs due to internal fiber architectures. Finally, we established the relationship between tortuosity and diffusivity that can be used for studying moisture diffusion in other FRPCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhen-chao Teng ◽  
Tian-jia Zhao ◽  
Yu Liu

In traditional building construction, the structural columns restrict the design of the buildings and the layout of furniture, so the use of specially shaped columns came into being. The finite element model of a reinforced concrete framework using specially shaped columns was established by using the ABAQUS software. The effects of concrete strength, reinforcement ratio, and axial compression ratio on the seismic performance of the building incorporating such columns were studied. The numerical analysis was performed for a ten-frame structure with specially shaped columns under low reversed cyclic loading. The load-displacement curve, peak load, ductility coefficient, energy dissipation capacity, and stiffness degradation curve of the specially shaped column frame were obtained using the ABAQUS finite element software. The following three results were obtained from the investigation: First, when the strength of concrete in the specially shaped column frame structure was increased, the peak load increased, while the ductility and energy dissipation capacity weakened, which accelerated the stiffness degradation of the structure. Second, when the reinforcement ratio was increased in the specially shaped column frame structure, the peak load increased and the ductility and energy dissipation capacity also increased, which increased the stiffness of the structure. Third, when the axial compression ratio was increased in the structure, the peak load increased, while ductility and energy dissipation capacity reduced, which accelerated the degradation of structural stiffness.


Sign in / Sign up

Export Citation Format

Share Document