scholarly journals Simultaneous Removal of BOD, Nitrogen and Phosphorus in Domestic Wastewater Using Anaerobic-Aerobic Sequencing Batch Reactor Process.

1994 ◽  
Vol 17 (12) ◽  
pp. 805-814 ◽  
Author(s):  
Masahiro IMURA ◽  
Kouji HASEGAWA ◽  
Ryuichi SUDO
1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


2008 ◽  
Vol 57 (12) ◽  
pp. 1951-1956 ◽  
Author(s):  
R. H. R. da Costa ◽  
V. S. Souto ◽  
A. T. S. Prelhaz ◽  
L. G. L. Neto ◽  
D. B. Wolff

This paper presents the experiments carried out in a hybrid sequencing batch reactor (HSBR), used for biological treatment of sewage. The HSBR was built in a cylindrical shape and made of stainless steel, with a volume of 1.42 m3. Besides the biomass in suspension, the reactor also carried fixed biomass (hybrid process), adhered in the support material. This consisted of a nylon net disposed in a grille for biofilm biomass adhesion. The reactor worked fully automated in operational cycles of maximum 8 hours each, presenting the following phases: filling, anoxic, aerobic, settle and draw of treated effluent, with 3 fillings per cycle. Increasing organic loads (0.14 to 0.51 kg TCOD/m3 day) and ammonium loads (0.002 to 0.006 kg NH4-N/m3·day) were tested. We monitored the reactor's performance by measuring the liquid phase (COD, pH, temperature, DO, nitrogen and phosphorus) during the cycles and by measuring the sludge through respirometric tests. The results obtained demonstrated TCOD removal efficiency between 73 and 96%, and ammonium removal efficiency between 50 and 99%. At the end of the cycles, the effluent presented ammonium concentration <20 mg/L, meeting the Brazilian environmental legislation standards (CONAMA 357/2005) regarding discharges into the water bodies. Respirometric tests showed biomass dependency on FCOD concentrations. Results have demonstrated the potential of this type of reactor for decentralized treatment of domestic wastewater.


1996 ◽  
Vol 33 (3) ◽  
pp. 29-38 ◽  
Author(s):  
R. S. Bernardes ◽  
A. Klapwijk

This investigation aims to monitor a strategy for biological nutrient removal (nitrogen and phosphorus) in a Sequencing Batch Reactor (SBR) treating domestic wastewater. For this, the performance of an SBR with nitrification, denitrification, carbon oxidation and phosphorus removal is evaluated. During this study the influent used was pre-settled domestic wastewater from Bennekom-Municipal Treatment Plant (The Netherlands). The average influent COD, TKN and phosphate were 443 mg COD/1, 71 mg N/1 and 7 mg P/1, respectively. Acetic acid was added to this influent from a feed solution, to increase the COD by an extra 100 mg COD/1. In this study, a pilot plant SBR was operated during 5 months in order to have: i) a mixed culture able to perform carbon oxidation, nitrification, denitrification and biological phosphorus removal and ii) long term assessment of the biological nitrogen and phosphorus removal processes. Pilot plant SBR consists of two cylindric polystyrene vessels, the first with total volume of 0.35 m3 (Reactor 1) and the second with total volume of 1.3 m3 (Reactor 2). The effluent had, in average, phosphate concentration lower than 1 mg P/1 and nitrogen concentration lower than 12 mg N/1.


Sign in / Sign up

Export Citation Format

Share Document