Advanced Treatment of Domestic Wastewater Using Sequencing Batch Reactor Activated Sludge Process

1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.

2012 ◽  
Vol 610-613 ◽  
pp. 1454-1458
Author(s):  
Ming Fen Niu ◽  
Hong Jing Jiao ◽  
Li Xu ◽  
Yan Yu ◽  
Jian Wei

A2N is two-sludge system, by using the method that first bringing up the cultivation of denitrifying phosphorus removing bacteria (DPB) and nitrification biofilm separately then connecting them, which can start up A2N system successfully. Nitrification biofilm was cultivated in a sequencing batch reactor (SBR). After 30 days, NH4+-N effluent concentration steadily stayed below 0.5mg·L-1.In another SBR, the activated sludge for the enrichment of DPB is from the anaerobic tank, which was firstly operated under anaerobic/aerobic (A/O) condition. After 20 days, PAOs was successfully enriched. Then, the activated sludge was conducted under anaerobic/anoxic/aerobic (A/A/O) condition, maintaining the anaerobic time, gradually increased anoxic time and induced aerobic time. After 30 days DPB was successfully enriched, two phases totally take 50 days. The removal efficiency of total nitrogen and phosphorus are above 85 % and 95 %, so that A2N system was started up successfully.


1994 ◽  
Vol 29 (7) ◽  
pp. 71-74 ◽  
Author(s):  
G. J. F. Smolders ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

Experiments have been performed, using a sequencing batch reactor, to examine the effect of pH on biological phosphorus removal in the activated sludge process. The results, which indicate that glycogen metabolism occurs during anaerobic conditions, are useful in elucidating the biochemical mechanisms involved in phosphorus-removal, and have potential implications for systems such as Phostrip.


2008 ◽  
Vol 57 (12) ◽  
pp. 1951-1956 ◽  
Author(s):  
R. H. R. da Costa ◽  
V. S. Souto ◽  
A. T. S. Prelhaz ◽  
L. G. L. Neto ◽  
D. B. Wolff

This paper presents the experiments carried out in a hybrid sequencing batch reactor (HSBR), used for biological treatment of sewage. The HSBR was built in a cylindrical shape and made of stainless steel, with a volume of 1.42 m3. Besides the biomass in suspension, the reactor also carried fixed biomass (hybrid process), adhered in the support material. This consisted of a nylon net disposed in a grille for biofilm biomass adhesion. The reactor worked fully automated in operational cycles of maximum 8 hours each, presenting the following phases: filling, anoxic, aerobic, settle and draw of treated effluent, with 3 fillings per cycle. Increasing organic loads (0.14 to 0.51 kg TCOD/m3 day) and ammonium loads (0.002 to 0.006 kg NH4-N/m3·day) were tested. We monitored the reactor's performance by measuring the liquid phase (COD, pH, temperature, DO, nitrogen and phosphorus) during the cycles and by measuring the sludge through respirometric tests. The results obtained demonstrated TCOD removal efficiency between 73 and 96%, and ammonium removal efficiency between 50 and 99%. At the end of the cycles, the effluent presented ammonium concentration <20 mg/L, meeting the Brazilian environmental legislation standards (CONAMA 357/2005) regarding discharges into the water bodies. Respirometric tests showed biomass dependency on FCOD concentrations. Results have demonstrated the potential of this type of reactor for decentralized treatment of domestic wastewater.


Sign in / Sign up

Export Citation Format

Share Document