scholarly journals Study of Aquatic Insect, Caddisfly, Stenopsyche marmorata as Bio-monitor of Trace Element Contamination in Rivers and Streams: Accumulation of Waterborne Trace Elements under Laboratory Conditions.

1995 ◽  
Vol 18 (11) ◽  
pp. 917-923 ◽  
Author(s):  
Hiroshi TOCHIMOTO ◽  
Taichiro NISHIMA
1997 ◽  
Vol 48 (6) ◽  
pp. 531 ◽  
Author(s):  
T. N. Arnold ◽  
C. E. Oldham

The arsenic, chromium, iron and lead contamination of sediments in Lake Yangebup was investigated, focussing on the potential for arsenic to be remobilized during resuspension of contaminated sediments. Despite a distinct source of arsenic, chromium and iron on one shore, horizontal trends in sediment concentrations were weak. Lead concentrations were homogeneous. This indicated a continual remobilization of these trace elements through the lake; a likely mechanism in such a shallow lake is resuspension of bottom sediments. An arsenic maximum was found 10 cm below the surface of the sediment in a settled flocculant layer that predominantly comprised decaying plankton. Remobilization of arsenic from this layer during resuspension was simulated with elutriate tests under both oxic and anoxic conditions. Under oxic conditions, the amount of arsenic released was correlated to the initial concentrations of sediment arsenic, indicating that porewater was the source of arsenic. However, in the anoxic experiments, no such correlations were evident, suggesting that biological or chemical processes were interfering with the redox potential and thus with the release of arsenic. Processes such as stratification, oxygen depletion and reaeration, desorption and adsorption in this shallow lake interact on timescales shorter than those that dominate contaminant cycling in deeper water bodies.


Author(s):  
Amrit Kumar Mishra ◽  
Rajalaxmi Sahoo ◽  
Saumya Samantaray ◽  
Deepak Apte

Seagrasses are considered as efficient bioindicators of coastal trace element contamination. This chapter provides an overview on the trace element accumulation, tolerance and biomonitoring capacity of the various seagrass species distributed along the coast of India. A total of 10 trace elements are reported in seagrasses, 11 in sediment and nine in the water column from India. From the 11 seagrass species studied, 60% of research have focused on Syringodium isoetifolium, Cymodocea serrulata, Cymodocea rotundata and Halophila ovalis. 78% of seagrass trace element research in India is from Palk bay and Gulf of Mannar (GOM), Tamil Nadu and 16% from Lakshadweep Islands. Out of the 10 trace elements, Cd, Cu, Pb and Zn are the most studied in seagrass, Fe, Mn, Ni and Pb in sediment and Cu, Fe, Mg, Ni and Zn in the water column. Accumulation capacity of various trace elements in seagrass were species-specific. S. isoetifolium have the highest concentration of Cd and Mg at Palk bay and Lakshadweep Islands respectively. The concentration of Cu was higher in C. serrulata at GOM. Halodule uninervis and Halophila decipens have the highest concentration of Co, and Cr, Ni, Pb and Zn from Lakshadweep Islands. The highest concentration of Fe and Mn were highest in Halophila beccarii and H. ovalis from the coast of Goa and Palk bay respectively. Threshold levels (>10 mg L-1) of Cd, Cu, Pb and Zn were observed for C. serrulata, H. ovalis, H. uninervis and T. hemprichii, that can affect the Photo System -II of these seagrasses and exert cellular stress leading to seagrass loss and die-off. High concentration of these elements can exert negative impacts on seagrass associated trophic assemblages and ecosystem functioning. Seagrasses of India can be utilized as bioindicators of coastal trace element contamination but the associated toxicity and human health risks needs further investigation.


2014 ◽  
Vol 4 ◽  
Author(s):  
Remigio Paradelo ◽  
María Teresa Barral

Magnetic susceptibility can be used for assessing anthropogenic pollution in solid matrices, including soils and composts. This work studies the distribution of trace elements and magnetic susceptibility in the different size fractions of six composts, for the development of measures aimed at reducing compost pollution at the production stage. The results showed that magnetic susceptibility decreased with increasing particle size in all composts, and the same was true for most trace element concentrations. Magnetic susceptibility was significantly correlated with Fe, as well as with Cu, Zn, Pb, Cr and Ni, which proves the relationship between the presence of ferric particles and trace element contamination in compost. Our results suggest that the association of trace elements and magnetic susceptibility is a characteristic feature in municipal solid waste composts.


2014 ◽  
Vol 8 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Emmanuel Wafo ◽  
Véronique Risoul ◽  
Thérèse Schembri ◽  
Véronique Lagadec ◽  
Frank Dhermain ◽  
...  

The main objective of this study was to evaluate the contamination by mercury (Hg), methylmercury (Me-Hg), cadmium (Cd), selenium (Se), zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) in dolphins stranded on the French Mediterranean coast. The distributions of these contaminants in the organs of dolphins have also been studied. Overall, contamination levels varied according to the following sequence: liver > kidney > lung > muscle, except for cadmium (kidney > liver > lung > muscle). Size and sex of animals were also considered. Young dolphins were less impacted with trace elements than adults, except for copper. Among the studied parameters, the most important appeared to be the size of mammals. In addition, in the case of mercury and selenium, the sex of mammals seemed to be also relevant. The correlations between the concentrations of trace elements suggest the existence of detoxification processes. Since 1990s, using dolphins for tracing marine pollution, a slight reduction in the burden of the considered trace elements could be noted.


2020 ◽  
Vol 18 (1) ◽  
pp. 77-96
Author(s):  
Hameed Alsamadany ◽  
Hassan S. Al-Zahrani ◽  
El-Metwally M. Selim ◽  
Mohsen M. El-Sherbiny

AbstractTo assess trace element concentrations (Zn, Cu, Pb, Cr, Cd and Ni) in the mangrove swamps along the Saudi coast of the Arabian Gulf, thirteen samples of surface sediment and leaves of grey mangrove, Avicennia marina were collected and analyzed. The detected trace element contents (μg g-1) in surface sediments were in the following descending order according to their mean values; Cr (49.18) > Zn (48.48) > Cu (43.06) > Pb (26.61) > Ni (22.88) > Cd (3.21). The results showed that the average concentrations of Cd and Pb exceeded their world average concentration of shale. The geo-accumulation, potential ecological risk and toxicity response indices demonstrated that trace elements have posed a considerable ecological risk, especially Cd. The inter-relationships between physico-chemical characters and trace elements suggests that grained particles of mud represent a noteworthy character in the distribution of trace elements compared to organic materials. Moreover, the results revealed that Zn was clearly bioaccumulated in leaf tissues A. marina. Dredging, landfilling, sewage effluents and oil pollution can be the paramount sources of pollution in the area under investigation.


Author(s):  
Roberto Ochoa-Contreras ◽  
Martín Enrique Jara-Marini ◽  
Joan-Albert Sanchez-Cabeza ◽  
Diana María Meza-Figueroa ◽  
Libia Hascibe Pérez-Bernal ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prince Oteng ◽  
John K. Otchere ◽  
Stephen Adusei ◽  
Richard Q. Mensah ◽  
Emmanuel Tei-Mensah

Tetrapleura tetraptera is widely cherished in African traditional homes because of its alleged therapeutic and nutritional properties. This present study aimed at determining the levels of vitamin A, C, E, and beta-carotene and trace element (Fe, Cu, Mn, Co, Se, and Zn) concentrations and their extractabilities in the pulp, seeds, and whole fruit (mixture of pulp and seeds) of T. tetraptera. The total trace element concentration of Fe, Cu, Co, Mn, and Zn and their extractabilities (%) were determined using flame atomic absorption spectrometer (FAAS), whereas UV-VIS spectrophotometer was used to determine selenium concentration. The trace element content (mg/kg) based on dry weight in the pulp, seeds, and whole fruit was Fe (162.00 ± 7.14, 115.00 ± 12.00, and 154.00 ± 25.20, respectively), Zn (31.60 ± 4.77, 43.40 ± 5.29, and 41.50 ± 8.97, respectively), Cu (16.10 ± 4.98, 11.90 ± 8.40, and 17.20 ± 14.50, respectively), Mn (55.30 ± 2.41, 156.00 ± 10.20, and 122.00 ± 5.29, respectively), Co (38.10 ± 6.40, 21.10 ± 7.15, and 44.00 ± 14.90, respectively), and Se (1.49 ± 0.17, 2.43 ± 0.28, and 2.97 ± 0.27 μg/g, respectively). The mineral extractabilities (%) in the pulp, seeds, and whole fruit of T. tetraptera were established to be in the order Co > Zn > Fe > Cu > Se > Mn. Also, the chromatographic method (HPLC) was used to evaluate vitamin E concentration, and vitamin C and concentration of beta-carotene were calculated from the obtained concentration of vitamin A using a conversion factor by the titrimetric method. From the results of vitamin analysis, a significant difference (p<0.05) was observed among the pulp, seeds, and whole fruit for vitamin C and E. However, no significant difference (p>0.05) was perceived among these plant parts for vitamin A and beta-carotene. This study has therefore revealed that the pulp, seeds, and whole fruit of T. tetraptera contain varying concentrations of vitamins and trace elements and has given many vital insights on which part of T. tetraptera to consume, as concentrations of these nutrients differ in the discrete parts of the fruit.


Sign in / Sign up

Export Citation Format

Share Document