scholarly journals Evidence of Brain Inflammation in Patients with Human T-Lymphotropic Virus Type 1-Associated Myelopathy (HAM): A Pilot, Multimodal Imaging Study Using 11C-PBR28 PET, MR T1-Weighted, and Diffusion-Weighted Imaging

2016 ◽  
Vol 57 (12) ◽  
pp. 1905-1912 ◽  
Author(s):  
R. Dimber ◽  
Q. Guo ◽  
C. Bishop ◽  
A. Adonis ◽  
A. Buckley ◽  
...  
2014 ◽  
Vol 29 (9) ◽  
pp. 1141-1150 ◽  
Author(s):  
Ritesh A. Ramdhani ◽  
Veena Kumar ◽  
Miodrag Velickovic ◽  
Steven J. Frucht ◽  
Michele Tagliati ◽  
...  

2009 ◽  
Vol 9 (2) ◽  
pp. 159-171 ◽  
Author(s):  
Peter Boross ◽  
Peter Bagossi ◽  
Irene Weber ◽  
Jozsef Tozser

1999 ◽  
Vol 73 (6) ◽  
pp. 4575-4581 ◽  
Author(s):  
Masahiko Makino ◽  
Satoshi Shimokubo ◽  
Shin-Ichi Wakamatsu ◽  
Shuji Izumo ◽  
Masanori Baba

ABSTRACT The development of human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is closely associated with the activation of T cells which are HTLV-1 specific but may cross-react with neural antigens (Ags). Immature dendritic cells (DCs), differentiated from normal donor monocytes by using recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin-4, were pulsed with HTLV-1 in vitro. The pulsed DCs contained HTLV-1 proviral DNA and expressed HTLV-1 Gag Ag on their surface 6 days after infection. The DCs matured by lipopolysaccharides stimulated autologous CD4+ T cells and CD8+ T cells in a viral dose-dependent manner. However, the proliferation level of CD4+ T cells was five- to sixfold higher than that of CD8+ T cells. In contrast to virus-infected DCs, DCs pulsed with heat-inactivated virions activated only CD4+ T cells. To clarify the role of DCs in HAM/TSP development, monocytes from patients were cultured for 4 days in the presence of the cytokines. The expression of CD86 Ag on DCs was higher and that of CD1a Ag was more down-regulated than in DCs generated from normal monocytes. DCs from two of five patients expressed HTLV-1 Gag Ag. Furthermore, both CD4+ and CD8+ T cells from the patients were greatly stimulated by contact with autologous DCs pulsed with inactivated viral Ag as well as HTLV-1-infected DCs. These results suggest that DCs are susceptible to HTLV-1 infection and that their cognate interaction with T cells may contribute to the development of HAM/TSP.


2021 ◽  
pp. 1-8
Author(s):  
Haimei Cao ◽  
Xiang Xiao ◽  
Jun Hua ◽  
Guanglong Huang ◽  
Wenle He ◽  
...  

Objectives: The present study aimed to study whether combined inflow-based vascular-space-occupancy (iVASO) MR imaging (MRI) and diffusion-weighted imaging (DWI) improve the diagnostic accuracy in the preoperative grading of gliomas. Methods: Fifty-one patients with histopathologically confirmed diffuse gliomas underwent preoperative structural MRI, iVASO, and DWI. We performed 2 qualitative consensus reviews: (1) structural MR images alone and (2) structural MR images with iVASO and DWI. Relative arteriolar cerebral blood volume (rCBVa) and minimum apparent diffusion coefficient (mADC) were compared between low-grade and high-grade gliomas. Receiver operating characteristic (ROC) curve analysis was performed to compare the tumor grading efficiency of rCBVa, mADC, and the combination of the two parameters. Results: Two observers diagnosed accurate tumor grade in 40 of 51 (78.4%) patients in the first review and in 46 of 51 (90.2%) in the second review. Both rCBVa and mADC showed significant differences between low-grade and high-grade gliomas. ROC analysis gave a threshold value of 1.52 for rCBVa and 0.85 × 10−3 mm2/s for mADC to provide a sensitivity and specificity of 88.0 and 81.2% and 100.0 and 68.7%, respectively. The area under the ROC curve (AUC) was 0.87 and 0.85 for rCBVa and mADC, respectively. The combination of rCBVa and mADC values increased the AUC to 0.92. Conclusion: The combined application of iVASO and DWI may improve the diagnostic accuracy of glioma grading.


Author(s):  
Reza Boostani ◽  
Mina Khodabandeh ◽  
Seyyed Abdolrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sanaz Ahmadi Ghezeldasht ◽  
...  

2014 ◽  
Vol 289 (32) ◽  
pp. 22284-22305 ◽  
Author(s):  
Elizabeth Jaworski ◽  
Aarthi Narayanan ◽  
Rachel Van Duyne ◽  
Shabana Shabbeer-Meyering ◽  
Sergey Iordanskiy ◽  
...  

2010 ◽  
Vol 84 (10) ◽  
pp. 5124-5130 ◽  
Author(s):  
Rashade A. H. Haynes ◽  
Bevin Zimmerman ◽  
Laurie Millward ◽  
Evan Ware ◽  
Christopher Premanandan ◽  
...  

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia/lymphoma (ATL) and is associated with a variety of lymphocyte-mediated disorders. HTLV-1 transmission occurs by transmission of infected cells via breast-feeding by infected mothers, sexual intercourse, and contaminated blood products. The route of exposure and early virus replication events are believed to be key determinants of virus-associated spread, antiviral immune responses, and ultimately disease outcomes. The lack of knowledge of early events of HTLV-1 spread following blood-borne transmission of the virus in vivo hinders a more complete understanding of the immunopathogenesis of HTLV-1 infections. Herein, we have used an established animal model of HTLV-1 infection to study early spatial and temporal events of the viral infection. Twelve-week-old rabbits were injected intravenously with cell-associated HTLV-1 (ACH-transformed R49). Blood and tissues were collected at defined intervals throughout the study to test the early spread of the infection. Antibody and hematologic responses were monitored throughout the infection. HTLV-1 intracellular Tax and soluble p19 matrix were tested from ex vivo cultured lymphocytes. Proviral copy numbers were measured by real-time PCR from blood and tissue mononuclear leukocytes. Our data indicate that intravenous infection with cell-associated HTLV-1 targets lymphocytes located in both primary lymphoid and gut-associated lymphoid compartments. A transient lymphocytosis that correlated with peak virus detection parameters was observed by 1 week postinfection before returning to baseline levels. Our data support emerging evidence that HTLV-1 promotes lymphocyte proliferation preceding early viral spread in lymphoid compartments to establish and maintain persistent infection.


Sign in / Sign up

Export Citation Format

Share Document