scholarly journals Performance evaluation of the uEXPLORER Total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize long axial field-of-view PET scanners

2020 ◽  
pp. jnumed.120.250597 ◽  
Author(s):  
Benjamin A. Spencer ◽  
Eric Berg ◽  
Jeffrey P. Schmall ◽  
Negar Omidvari ◽  
Edwin K. Leung ◽  
...  
Author(s):  
John Dickson ◽  
Uta Eberlein ◽  
Michael Lassmann

Abstract Aim Recent advancements in PET technology have brought with it significant improvements in PET performance and image quality. In particular, the extension of the axial field of view of PET systems, and the introduction of semiconductor technology into the PET detector, initially for PET/MR, and more recently available long-field-of-view PET/CT systems (≥ 25 cm) have brought a step change improvement in the sensitivity of PET scanners. Given the requirement to limit paediatric doses, this increase in sensitivity is extremely welcome for the imaging of children and young people. This is even more relevant with PET/MR, where the lack of CT exposures brings further dose reduction benefits to this population. In this short article, we give some details around the benefits around new PET technology including PET/MR and its implications on the EANM paediatric dosage card. Material and methods  Reflecting on EANM adult guidance on injected activities, and making reference to bed overlap and the concept of MBq.min bed−1 kg−1, we use published data on image quality from PET/MR systems to update the paediatric dosage card for PET/MR and extended axial field of view (≥ 25 cm) PET/CT systems. However, this communication does not cover the expansion of paediatric dosing for the half-body and total-body scanners that have recently come to market. Results In analogy to the existing EANM dosage card, new parameters for the EANM paediatric dosage card were developed (class B, baseline value: 10.7 MBq, minimum recommended activity 10 MBq). The recommended administered activities for the systems considered in this communication range from 11 MBq [18F]FDG for a child with a weight of 3 kg to 149 MBq [18F]FDG for a paediatric patient weight of 68 kg, assuming a scan of 3 min per bed position. The mean effective dose over all ages (1 year and older) is 2.85 mSv. Conclusion With this, recommendations for paediatric dosing are given for systems that have not been considered previously.


Author(s):  
Ian Alberts ◽  
George Prenosil ◽  
Clemens Mingels ◽  
Karl Peter Bohn ◽  
Marco Viscione ◽  
...  

Abstract Purpose While acquisition of images in [68 Ga]Ga-PSMA-11 following longer uptake times can improve lesion uptake and contrast, resultant imaging quality and count statistics are limited by the isotope’s half-life (68 min). Here, we present a series of cases demonstrating that when performed using a long axial field-of-view (LAFOV) PET/CT system, late imaging is feasible and can even provide improved image quality compared to regular acquisitions. Methods In this retrospective case series, we report our initial experiences with 10 patients who underwent standard imaging at 1 h p.i. following administration of 192 ± 36 MBq [68 Ga]Ga-PSMA-11 with additional late imaging performed at 4 h p.i. Images were acquired in a single bed position for 6 min at 1 h p.i. and 16 min p.i. at 4 h p.i. using a LAFOV scanner (106 cm axial FOV). Two experienced nuclear medicine physicians reviewed all scans in consensus and evaluated overall image quality (5-point Likert scale), lesion uptake in terms of standardised uptake values (SUV), tumour to background ratio (TBR) and target-lesion signal to background noise (SNR). Results Subjective image quality as rated on a 5-point Likert scale was only modestly lower for late acquisitions (4.2/5 at 4 h p.i.; 5/5 1 h p.i.), TBR was significantly improved (4 h: 3.41 vs 1 h: 1.93, p < 0.001) and SNR was improved with borderline significance (4 h: 33.02 vs 1 h: 24.80, p = 0.062) at later imaging. Images were obtained with total acquisition times comparable to routine examinations on standard axial FOV scanners. Conclusion Late acquisition in tandem with a LAFOV PET/CT resulted in improvements in TBR and SNR and was associated with only modest impairment in subjective visual imaging quality. These data show that later acquisition times for [68 Ga]Ga-PSMA-11 may be preferable when performed on LAFOV systems.


2021 ◽  
Vol 253 ◽  
pp. 09004
Author(s):  
A. Ros ◽  
L. Barrientos ◽  
M. Borja-Lloret ◽  
J.V. Casaña ◽  
E. Muñoz ◽  
...  

In recent decades, PET scanners have been widely used for diagnosis and treatment monitoring in nuclear medicine. The continuous effort of the scientific community has led to improvements in scanner performance. Total-body PET is one of the latest upgrades in PET scanners. These kinds of scanners are able to scan the whole body of the patient with a single bed position, since the scanner tube is long enough for the patient to fit inside. While these scanners show unprecedented efficiency and extended field-of-view, a drawback is their low spatial resolution compared to dedicated scanners. In order to improve the spatial resolution of specific areas when measuring with a total-body PET scanner, the IRIS group at IFIC-Valencia is developing a probe. The proposed setup of the probe contains a monolithic scintillation crystal and a SiPM. The signal of the probe is read out by a TOFPET2 ASIC from PETsys, which has shown good performance for PET in terms of spatial and time resolutions. Furthermore, the PETsys technology generates a trigger signal that will be used to time synchronise the probe and the scanner. The proof-of-concept of the probe will be tested in a Preclinical Super Argus PET/CT scanner for small animals located at IFIC. Preliminary simulations of the scanner and the probe under ideal conditions show a slight improvement in the position reconstruction compared to the data obtained with the scanner, therefore we expect a considerable improvement when using the probe in a total-body PET scanner. Characterisation tests of the probe have been performed with a 22Na point-like source, obtaining an energy resolution of 9.09% for the 511 keV energy peak and a temporal resolution of 619 ps after time walk correction. The next step of the project is to test the probe measuring in temporal coincidence with the scanner.


2009 ◽  
Vol 56 (3) ◽  
pp. 633-639 ◽  
Author(s):  
Bjoern W. Jakoby ◽  
Yanic Bercier ◽  
Charles C. Watson ◽  
Bernard Bendriem ◽  
David W. Townsend

Author(s):  
Mahak Osouli Alamdari ◽  
Pardis Ghafarian ◽  
Parham Geramifar ◽  
Mohammad Reza Ay

Purpose: Positron Emission Tomography (PET) imaging is a nuclear medicine imaging technique based on the recording of two photons as coincidence created by positron annihilation. Materials and Methods: PET coincidence events include true and unwanted coincidences (random, scattered, multiple coincidences). We modeled the Discovery 690 (D-690) PET scanner using the GATE simulation tool and estimated the effect of the diameter of the scattering medium out of the Axial Field Of View (AFOV) on the random coincidence rates. Results: The validation results indicated that the average difference between simulated and measured data for sensitivity and scatter fraction tests are 5% and 3%, respectively. Moreover, the results revealed that the increasing diameter of the scattering medium out of the AFOV has a direct effect on the random coincidence rates within the Field Of View (FOV). Conclusion: The study concluded that the presence of a scattering medium near the FOV increases the rate of random coincidences.  


Author(s):  
Riemer H. J. A. Slart ◽  
Charalampos Tsoumpas ◽  
Andor W. J. M. Glaudemans ◽  
Walter Noordzij ◽  
Antoon T. M. Willemsen ◽  
...  

AbstractIn this contribution, several opportunities and challenges for long axial field of view (LAFOV) PET are described. It is an anthology in which the main issues have been highlighted. A consolidated overview of the camera system implementation, business and financial plan, opportunities and challenges is provided. What the nuclear medicine and molecular imaging community can expect from these new PET/CT scanners is the delivery of more comprehensive information to the clinicians for advancing diagnosis, therapy evaluation and clinical research.


2019 ◽  
Vol 68 ◽  
pp. 146-154
Author(s):  
Alessandra Zorz ◽  
Roberta Matheoud ◽  
Elisa Richetta ◽  
Saraswati Baichoo ◽  
Matteo Poli ◽  
...  

2011 ◽  
Vol 56 (12) ◽  
pp. 3629-3643 ◽  
Author(s):  
L R MacDonald ◽  
R L Harrison ◽  
A M Alessio ◽  
W C J Hunter ◽  
T K Lewellen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document