scholarly journals Structure and Dynamics of the Lambert Glacier-Amery Ice Shelf System: Implications for the Origin of Prydz Bay Sediments

Author(s):  
M.J. Hambrey
Polar Record ◽  
1960 ◽  
Vol 10 (64) ◽  
pp. 30-34 ◽  
Author(s):  
Malcolm Mellor ◽  
Graeme McKinnon

During the thirty years since the Amery Ice Shelf was first sighted there has been a steady accumulation of information, first on the ice shelf itself and later on the interesting mountains and glacier systems which lie to its south. The ice shelf occupies the head of a large embayment consisting of Prydz Bay and Mackenzie Bay, which deeply indents the coastline of the Antarctic mainland near the borders of MacRobertson Land and Princess Elizabeth Land. An associated valley runs south from the bay, between the Prince Charles Mountains and the Mawson Escarpment, and it is occupied by one of the world's largest valley glaciers, the Lambert Glacier. (In fact, recent findings by Soviet parties suggest that the Lambert Glacier is considerably longer than the Beardmore Glacier.) The exploration, survey and subsequent mapping of the ice shelf, and the mountains and glaciers of its hinterland, by Australian National Antarctic Research Expeditions in recent years has been a major contribution to Antarctic geography.


Polar Record ◽  
1967 ◽  
Vol 13 (85) ◽  
pp. 439-441 ◽  
Author(s):  
Phillip Law

The Lambert Glacier system, one of the largest in Antarctica, drains from Princess Elizabeth Land into Prydz Bay, terminating in the Amery Ice Shelf, in about long 70° to 75° E.


2021 ◽  
Author(s):  
Jing Jin ◽  
Antony J. Payne ◽  
William Seviour ◽  
Christopher Bull

<p>The basal melting of the Amery Ice Shelf (AIS) in East Antarctica and its connections with the oceanic circulation are investigated by a regional ocean model. The simulated estimations of net melt rate over AIS from 1976 to 2005 vary from 1 to 2 m/yr depending primarily due to inflow of modified Circumpolar Deep Water (mCDW). Prydz Bay Eastern Costal Current (PBECC) and the eastern branch of Prydz Bay Gyre (PBG) are identified as two main mCDW intrusion pathways. The oceanic heat transport from both PBECC and PBG has significant seasonal variability, which is associated with the Antarctic Slope Current. The onshore heat transport has a long-lasting effect on basal melting. The basal melting is primarily driven by the inflowing water masses though a positive feedback mechanism. The intruding warm water masses destabilize the thermodynamic structure in the sub-ice shelf cavity therefore enhancing the overturning circulations, leading to further melting due to increasing heat transport. However, the inflowing saltier water masses due to sea-ice formation could offset the effect of temperature through stratifying the thermodynamic structure, then suppressing the overturning circulation and reducing the basal melting.</p>


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


1975 ◽  
Vol 15 (73) ◽  
pp. 103-111 ◽  
Author(s):  
V. I. Morgan ◽  
W. F. Budd

AbstractSeveral seasons of aerial ice-thickness soundings over the region of the Prince Charles Mountains, the Lambert Glacier system, the Amery Ice Shelf, and their drainage basin in east Antarctica have now been completed. The measurements provide detailed maps of surface topography and ice thickness over an area of about 2 X 105 km2. The equipment used consisted of a 100 MHz echo sounder designed and constructed by Antarctic Division and carried in a Pilatus Porter aircraft. ERTS imagery provides a valuable background for portraying the echo-sounding results. These results show that an extensive, deep subglacial valley system forms the basis of the large drainage basin with concave ice surface topography which channels the ice flow into the Amery Ice Shelf. Deep glacial streams penetrate a long way into the ice-sheet basin. The rock relief is considerable, varying from 3 000 m above (present) sea-level to 2 000 m below sea-level. A very deep subglacial trench exists in the region of the confluence of the Fisher, Mellor, and Lambert Glaciers where the ice thickness reaches 2 500 m. The low surface slope and high ice velocity are suggestive of high melt production in this region. The strong echo, together with the high bedrock back-slope, suggests that the deep trench may contain a basal melt lake.


1982 ◽  
Vol 28 (98) ◽  
pp. 23-28 ◽  
Author(s):  
Peter Wellman

AbstractA study of the geomorphology of the Prince Charles Mountains using colour vertical air photographs shows well–preserved old moraines throughout much of the outcrop area. Along Fisher Glacier, lower Lambert Glacier and the Amery Ice Shelf, within the altitude range 50–2 000 m, the old moraines show that the ice level had risen 150–200 m above the present level at least three times. Old moraines elsewhere show that none of the other glaciers had risen significantly in their upper parts; the rise of their lower parts was caused by the rise of lower Lambert Glacier and the Amery Ice Shelf. The changes in ice level are unlikely to be due to climatic change because this would not repeatedly affect only one glacier draining central Antarctica. It is thought that the changes in ice level are caused by repeated surges of Fisher Glacier.


2000 ◽  
Vol 46 (155) ◽  
pp. 561-570 ◽  
Author(s):  
Helen A. Fricker ◽  
Roland C. Warner ◽  
Ian Allison

AbstractWe combine European Remote-sensing Satellite (ERS-1) radar altimeter surface elevations (Fricker and others, 2000) with six different accumulation distributions to compute balance fluxes for the Lambert Glacier–Amery Ice Shelf drainage system. These interpolated balance fluxes are compared with fluxes derived from in situ measurements of ice thickness and velocity at 73 stations of the Lambert Glacier basin traverse and at 11 stations further downstream, to assess the system’s state of balance. For the upstream line we obtain a range of imbalance estimates, from −23.8% to +19.9% of the observed flux, reflecting the sensitivity to the accumulation distributions. For some of the accumulation distributions the imbalance estimates vary significantly between different parts of the line. Imbalance estimates for the downstream line range from −17.7% to +70.2%, with four of the estimates exceeding +30%, again reflecting the sensitivity of the result to input accumulation, and strongly suggesting that the mass balance of the region between the two lines is positive. Our results confirm the importance of accurate estimates of accumulation in ice-sheet mass-balance studies. Furthermore, they suggest that it is not possible to accurately determine the state of balance of large Antarctic drainage basins on the basis of currently available accumulation distributions.


2016 ◽  
Vol 121 (8) ◽  
pp. 6009-6020 ◽  
Author(s):  
L. Herraiz-Borreguero ◽  
D. Lannuzel ◽  
P. van der Merwe ◽  
A. Treverrow ◽  
J. B. Pedro

Polar Record ◽  
1989 ◽  
Vol 25 (153) ◽  
pp. 99-106 ◽  
Author(s):  
Michael J. Hambrey ◽  
Birger Larsen ◽  
Werner U. Ehrmann

AbstractDuring Leg 119 of the Ocean Drilling Program, between December 1987 and February 1988, six holes were drilled in the Kerguelen Plateau, southern Indian Ocean, and five in Prydz Bay at the mouth of the Amery Ice Shelf, on the East Antarctic continental shelf. The Prydz Bay holes, reported here, form a transect from the inner shelf to the continental slope, recording a prograding sequence of possible Late Paleozoic to Eocene continental sediments of fluvial aspect, followed by several hundred metres of Early Oligocene (possibly Middle Eocene) to Quaternary glaciallydominated sediments. This extends the known onset of large-scale glaciation of Antarctica back to about 36–40 million years ago, the sedimentary record suggesting that a fully developed East Antarctic Ice Sheet reached the coast at Prydz Bay at this time, and was more extensive than the present sheet. Subsequent glacial history is complex, with the bulk of sedimentation in the outer shelf taking place close to the grounding line of an extended Amery Ice S helf. However, breaks in the record and intervals of no recovery may hide evidence of periods of glacial retreat.


Sign in / Sign up

Export Citation Format

Share Document