scholarly journals an Improved Indoor Geolocation Algorithm based on Log-distance Path Loss Model

Author(s):  
Liang Pei ◽  
Shixuan Liu ◽  
Bo Wang ◽  
Wenqing Li
2019 ◽  
Vol E102.B (8) ◽  
pp. 1676-1688 ◽  
Author(s):  
Mitsuki NAKAMURA ◽  
Motoharu SASAKI ◽  
Wataru YAMADA ◽  
Naoki KITA ◽  
Takeshi ONIZAWA ◽  
...  

Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Author(s):  
Arumjeni Mitayani ◽  
Galih Nugraha Nurkahfi ◽  
Mochamad Mardi Marta Dinata ◽  
Vita Awalia Mardiana ◽  
Nasrullah Armi ◽  
...  

2021 ◽  
pp. 100393
Author(s):  
N.H. Ranchagoda ◽  
K. Sithamparanathan ◽  
M. Ding ◽  
A. Al-Hourani ◽  
K.M. Gomez

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Juyul Lee ◽  
Myung-Don Kim ◽  
Hyun Kyu Chung ◽  
Jinup Kim

This paper presents a NLOS (non-line-of-sight) path loss model for low-height antenna links in rectangular street grids to account for typical D2D (device-to-device) communication link situations in high-rise urban outdoor environments. From wideband propagation channel measurements collected in Seoul City at 3.7 GHz, we observed distinctive power delay profile behaviors between 1-Turn and 2-Turn NLOS links: the 2-Turn NLOS has a wider delay spread. This can be explained by employing the idea that the 2-Turn NLOS has multiple propagation paths along the various street roads from TX to RX, whereas the 1-Turn NLOS has a single dominant propagation path from TX to RX. Considering this, we develop a path loss model encompassing 1-Turn and 2-Turn NLOS links with separate scattering and diffraction parameters for the first and the second corners, based on the Uniform Geometrical Theory of Diffraction. In addition, we consider the effect of building heights on path loss by incorporating an adjustable “waveguide effect” parameter; that is, higher building alleys provide better propagation environments. When compared with field measurements, the predictions are in agreement.


Sign in / Sign up

Export Citation Format

Share Document