scholarly journals Structure Topology Optimization Design of Brake Pad in Large Megawatt Wind Turbine Disc Brake

Author(s):  
Zhihua Sha ◽  
Jian Yin ◽  
Shengfang Zhang ◽  
Yu Liu ◽  
Fujian Ma
Author(s):  
Wang Dongwei ◽  
Liu Mingxing ◽  
Wu Xiao ◽  
Yan Hao ◽  
Wu Zhiqiang

Abstract Offshore floating nuclear power plant (FNPP) is characterized by its small and mobility, which is not only able to provide safe and efficient electric energy to remote islands, but to the oil and gas platforms. The safety digital control system (DCS) cabinet, as a carrier for the electronic devices, plays a significant role in ensuring the normal operation of the nuclear power plant. To satisfy the requirements of cabinet used in the sea environment, such as well rigidity, shock load resistance, good seal and corrosion resistance, etc, more and more attention is focused on the cast aluminum cabinet. However, the cast aluminum structure may cause larger weight of cabinet, which inevitability affects the mobility of cabinet, and increases the carried load of ship as well. Therefore, seeking for an effective approach to design a light weight cast aluminum cabinet for the offshore FNPP is definitely necessary. In this work, a frame of cast aluminum cabinet with lightweight is obtained successfully via structure topology optimization design, it is found that the weight of the frame can be reduced to 50% after optimization iterations. Subsequently, the natural frequency of the optimized cast aluminum cabinet is calculated by using ABAQUS, it is seen that the first mode frequency of the frame is beyond 30 Hz, which can meet the basic stiffness requirement. Accordingly, dynamic design analysis method (DDAM) is performed to verify the ability of the optimized cast aluminum cabinet in resisting sudden shock load, and the shock response characteristics of the cabinet are determined. Numerical results support that the optimized frame of cabinet possesses good resistance to high level shock. However, for the assembled cast aluminum cabinet, the vertical shock circumstance turns out to be the most critical condition, high stress and deformation regions occurs at the bracket and column. Reinforcements are proposed to make the bracket stiffer in this shock loading condition.


2013 ◽  
Vol 834-836 ◽  
pp. 1464-1469
Author(s):  
Sheng Mei Luo ◽  
Zhao Yang Niu ◽  
Wei Liu ◽  
Fu Fang Luo ◽  
Jun Jun Jiang

The detail analysis proposal of the cylinder body is put forward for the automatic tool change mechanism of the QYJ-21 type horizontal machining center. It consists of three main aspects. Firstly, the dimensional model of the cylinders arm bracket portion will be created. Secondly, the topology optimization design of the arm bracket is implemented based on ANSYS Workbench. Finally, meeting the stiffness requirements, the optimal topology shape will be established, for it had the lightest weight.


2014 ◽  
Vol 945-949 ◽  
pp. 1216-1222 ◽  
Author(s):  
Li Yao ◽  
Yun Xia Gao ◽  
Hai Jun Yang

For the prestressed plane entitiy steel structure topology optimization design which design variables include the cable pretension value, unit size and the structural topology, the optimized mathematical model which objective function is the minimum structural weight is established with consideration of the constrains of stress and displacement. As for the solving method, firstly we need to determine the pretension applying to the cable according to full stress design and choose the unit size; then we need to conduct displacement sensitivity analysis to delete the low sensitivity unit to realize the structural topology optimization design. The example result is in conformity with the corresponding system of mechanical performance, and it indicates that the method proposed in this paper is effective.


2011 ◽  
Vol 321 ◽  
pp. 200-203
Author(s):  
Jing Kui Li ◽  
Yi Min Zhang

The KNN method is extracted from the technique of pattern recognition for the continuum structure topology optimization design with information functional materials. Original design region is taken as initial sample space, and continuum structure's units are regarded as samples. Unit stress and displacement sensitivity are utilized as feature vector to describe sample, and the feature vectors' Euclidean distance is considered as the recognition standard to classify all the samples. One FEM package is utilized to process the entire optimization. Finally, the topology optimization result is obtained. Several examples are verified under different situations. The results indicate that the KNN method is feasible.


2013 ◽  
Vol 475-476 ◽  
pp. 1382-1386
Author(s):  
Hui Zhou ◽  
Gang Yan Li ◽  
Yuan Zhang ◽  
Le Li

Horizontal preloading domestic waste transfer station is the core equipment for domestic waste disposal. Compression equipment is the elementary equipment of horizontal preloading domestic waste transfer station, which should be ensured its mechanical properties and structural lightweight. According to the compression box structure in this paper, structural topology optimization model is established. By using HyperWorks software, the result of structural topology optimization result of compression box is obtained. Based on the result of topology optimization, the structural improvement design model of compression box is established, and the number, location, size of strengthening rib for bottom plate, top plate, side plate are optimal designed so as to realize structural lightweight.


2020 ◽  
Vol 16 (3) ◽  
pp. 595-605
Author(s):  
Yu Liu ◽  
Jie Hao ◽  
Panli Kang ◽  
Zhihua Sha ◽  
Fujian Ma ◽  
...  

Purpose The purpose of this paper is to establish a rigid–flexible coupling model of wind turbine disc brake to simulate the actual working condition of the wind turbine brake and to study the dynamic characteristics of the compensation mechanism under different friction coefficients and braking force. It provides reference for the structure design and optimization of the compensation mechanism (compensation brake wear) in the wind turbine brake. Design/methodology/approach Based on multi-body contact dynamics theory, the rigid‒flexible coupling dynamic model of wind turbine brakes with compensation mechanism is established, in which the contact process of the components in the compensation mechanism and the phenomenon of rotation and return are described dynamically, and the rotation angle of the compensation nut and the axial displacement response of the compensation screw are calculated under different parameters. Findings The analysis results show that the braking reliability of the brake compensation mechanism can be effectively improved by increasing the friction coefficient of threads or increasing the friction of push rod contact surface; increasing the braking force can also improve the reliability of brake compensation mechanism, but when the braking force comes over a critical value, the effect of braking force on the reliability of the brake is very small. The braking test verifies the effectiveness of the simulation results. Originality/value Analyzing the influence of compensation mechanism on braking reliability in the braking process is of great practical significance for improving the braking efficiency and process safety of wind turbine brake.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
S. Zhang ◽  
J. Yin ◽  
Y. Liu ◽  
Z. Sha ◽  
F. Ma ◽  
...  

Brake pads of disc brake play an important role in the stable braking process of a large-megawatt wind turbine. There is always vibration, screaming, and severe nonuniform wear under the effect of both retardation pressure and friction. To solve these issues, this article aims to find a new structure of the brake pads to improve brake performance. A multiobjective structure topology optimization method considering thermal-structural coupling and brake vibration is carried out in this article. Based on topology optimization method of Solid Isotropic Microstructures with Penalization (SIMP), the compromise planning theory is applied to meet the stiffness requirement and vibration performance of brake pads. Structure of brake pads is optimized, and both the stiffness and vibration performance of brake pads are also improved. The disadvantages of single-objective optimization are avoided. Thermal-structural coupling analysis is tested with the actual working conditions. The results show that the new structure meets the stiffness requirement and improves the vibration performance well for the large-megawatt wind turbine. The effectiveness of the proposed method has been proved by the whole optimization process.


Sign in / Sign up

Export Citation Format

Share Document