scholarly journals Experimental Validation and Constitutive Relationship of Steel Material under Elevated Temperature and High Strain Rate

Author(s):  
Shi Yan ◽  
Hang Wu ◽  
Baoxin Qi
Strain ◽  
2021 ◽  
Author(s):  
Lloyd Fletcher ◽  
Frances Davis ◽  
Sarah Dreuilhe ◽  
Aleksander Marek ◽  
Fabrice Pierron

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Pradeep Lall ◽  
Vishal Mehta ◽  
Jeff Suhling ◽  
David Locker

Abstract Leadfree electronics in harsh environments often may be exposed to elevated temperature for the duration of storage, transport, and usage in addition to high strain rate triggering loads during drop-impact, vibration, and shock. These electronic components may get exposed to high strain rates of 1 to 100 s−1 and operating temperatures up to 200 °C in critical surroundings. Doped SAC solder alloys such as SAC-Q are being considered for use in fine-pitch electronic components. SAC-Q consists of Sn-Ag-Cu alloy in addition to Bi (SAC+Bi). Prior data presented to date for lead-free solders, such as SAC-Q alloy, at high aging temperature and high strain rate are for 50 °C sustained exposure. In this paper, the effect of sustained exposure to temperature of 100 °C on high strain rate properties of SAC-Q is studied. Thermally aged SAC-Q samples at 100 °C have been tested at a range of strain rates including 10, 35, 50, and 75 s−1 and operating temperatures ranging from 25 °C up to 200 °C. Stress–strain curves are established for the given range of strain rates and operating temperatures. Also, the computed experimental results and data have been fitted to the Anand viscoplasticity model for SAC-Q for comparison.


2019 ◽  
Vol 167 ◽  
pp. 51-70 ◽  
Author(s):  
Wanghui Li ◽  
Eric N. Hahn ◽  
Xiaohu Yao ◽  
Timothy C. Germann ◽  
Xiaoqing Zhang

Author(s):  
Pradeep Lall ◽  
Geeta Limaye ◽  
Sandeep Shantaram ◽  
Jeff Suhling

Industry migration to lead-free solders has resulted in a proliferation of a wide variety of solder alloy compositions. The most popular amongst these are the Tin-Silver-Copper (Sn-Ag-Cu or SAC) family of alloys like SAC105, SAC305 etc. Recent studies have highlighted the detrimental effects of isothermal aging on the material properties of these alloys. SAC alloys have shown up to 50% reduction in their initial elastic modulus and ultimate tensile strength within a few months of elevated temperature aging. This phenomenon has posed a severe design challenge across the industry and remains a road-block in the migration to Pb-free. Multiple compositions with additives to SAC have been proposed to minimize the effect of aging and creep while maintaining the melting temperatures, strength and cost at par with SAC. Innolot is a newly developed high-temperature, high-performance lead-free substitute by InnoRel™ targeting the automotive electronics segment. Innolot contains Nickel (Ni), Antimony (Sb) and Bismuth (Bi) in small proportions in addition to Sn, Ag and Cu. The alloy has demonstrated enhanced reliability under thermal cycling as compared to SAC alloys. In this paper, the high strain rate material properties of Innolot have been evaluated as the alloy ages at an elevated temperature of 50°C. The strain rates chosen are in the range of 1–100 per-second which are typical at second level interconnects subjected to drop-shock environments. The strain rates and elevated aging temperature have been chosen also to correspond to prior tests conducted on SAC105 and SAC305 alloys at this research center. This paper presents a comparison of material properties and their degradation in the three alloys — SAC105, SAC305 and Innolot. Full field strain measurements have been accomplished with the use of high speed imaging in conjunction with Digital Image Correlation (DIC). Ramberg-Osgood non-linear model parameters have been determined to curve-fit through the experimental data. The parameters have been implemented in Abaqus FE model to obtain full-field stresses which correlates with contours obtained experimentally by DIC.


2013 ◽  
Vol 580 ◽  
pp. 385-390 ◽  
Author(s):  
Xiangyu Wang ◽  
Chuanzhen Huang ◽  
Bin Zou ◽  
Hanlian Liu ◽  
Hongtao Zhu ◽  
...  

Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Electronics products may often be exposed to high temperature during storage, operation and handling in addition to high strain rate transient dynamic loads during drop-impact. Electronics subjected to drop-impact, shock and vibration may experience strain rates of 1–100 per sec. There are no material properties available in published literature at high strain rate at elevated temperature. High temperature and vibrations can contribute to the failures of electronic system. The reliability of electronic products can be improved through a thorough understanding of the weakest link in the electronic systems which is the solder interconnects. The solder interconnects accrue damage much faster when subjected to Shock and vibration at elevated temperatures. There is lack of fundamental understanding of reliability of electronic systems subjected to thermal loads. Previous studies have showed the effect of high strain rates and thermal aging on the mechanical properties of leadfree alloys including elastic modulus and the ultimate tensile strength. Extended period of thermal aging has been shown to affect the mechanical properties of lead free alloys including elastic modulus and the ultimate tensile strength at low strain rates representative of thermal fatigue [Lee 2012, Motalab 2012]. Previously, the microstructure, mechanical response and failure behavior of leadfree solder alloys when subjected to elevated isothermal aging and/or thermal cycling [Darveaux 2005, Ding 2007, Pang 2004] have been measured. Pang [1998] has showed that young’s modulus and yield stress of Sn-Pb are highly depending on strain rate and temperature. The ANAND viscoplastic constitutive model has been widely used to describe the inelastic deformation behavior of solders in electronic components. Previously, Mechanical properties of lead-free alloys, at different high strain rates (10, 35, 50, 75 /sec) and elevated temperature (25 C-125 C) for pristine samples have been studied [Lall 2012 and Lall 2014]. Previous researchers [Suh 2007 and Jenq 2009] have determined the mechanical properties of SAC105 at very high strain rate (Above 1000 per sec) using compression testing. But there is no data available in published literature at high strain rate and at elevated temperature for aged conditions. In this study, mechanical properties of lead free SAC105 has been determined for high strain rate at elevated temperature for aged samples. Effect of aging on mechanical properties of SAC105 alloy a high strain rates has been studied. Stress-Strain curves have been plotted over a wide range of strain rates and temperatures for aged specimen. Experimental data for the aged specimen has been fit to the ANAND’s viscoplastic model. SAC105 leadfree alloys have been tested at strain rates of 10, 35, 50 and 75 per sec at various operating temperatures of 50°C, 75°C, 100°C and 125°C. The test samples were exposed to isothermal aging conditions at 50°C for different aging time (30, 60, and 120 Days) before testing. Full-field strain in the specimen have been measured using high speed imaging at frame rates up to 75,000 fps in combination with digital image correlation. The cross-head velocity has been measured prior-to, during, and after deformation to ensure the constancy of cross-head velocity.


Sign in / Sign up

Export Citation Format

Share Document