scholarly journals Effects of Penetration Enhancers for Transdermal Drug Delivery System and Methods Used for Them

Author(s):  
Guangyu Xu ◽  
Bin Zhao ◽  
Guanghong Wang ◽  
Manli Wang
Author(s):  
CAMELIA DWI PUTRI MASRIJAL ◽  
HARMITA HARMITA ◽  
ISKANDARSYAH ISKANDARSYAH

Objective: Medroxyprogesterone Acetate (MPA) using a transdermal drug delivery system for contraception by passive diffusion is limited by the skin barrier properties. Penetration enhancers such as olive oil (fatty acid permeation enhancer) and DMSO (chemical enhancer) can be used. The objective of this study was to overcome MPA penetration problem by using olive oil and DMSO. Methods: An in vitro penetration study using the Franz diffusion cells was performed. The first penetration study used MPA in olive oil (O) and MPA in coconut oil (C) with the concentration 100 μg/ml to each sample and MPA suspension as a control with the same concentration. The second study used MPA in olive oil with the concentration 200.0 μg/ml (A), MPA in olive oil with 0.5% DMSO with the concentration 200.0 μg/ml (B), and MPA in olive oil with 1% DMSO with the concentration 200 μg/ml (C). Results: MPA penetration test for olive oil+0.5% DMSO had flux value 4.24±0.074 μg/cm2. hr and it was not significantly different (t-test, P>0.05) with olive oil+1% DMSO. While the MPA penetration test in only Olive oil had flux value 0.90±0.0087 μg/cm2. hr. Conclusion: This research concluded that olive oil and 0.5% DMSO could improve the penetration of MPA into skin membrane by 4.5 times more than olive oil alone.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 62-66 ◽  
Author(s):  
Anupriya Kapoor ◽  
Shashi Kiran Mishra ◽  
Dharmesh Kumar Verma ◽  
Prashant Pandey

In present scenario more than 70% of the drugs that are taken by oral route are found to be less effective as desired, to overcome this constraint Transdermal drug delivery system has emerged as an innovative area of research, this system helps in delivering the drugs and macromolecules through skin into systemic circulation. At present, the worldwide market of Transdermal patch has reached 2 billion pounds. Many drugs like Estrogen, Progestrone, Nitroglycerine, Clonodine etc. are fabricated in form of Transdermal patches due to its ability to deliver the drug in non-invasive manner and also to overcome the problems associated with oral route. Although the Transdermal patches deliver the drug at predetermined rate1, the partitioning of drug from the system to the skin and then penetration through different layers of skin can be altered by adding penetration enhancers that can be physical or chemical in nature. This article deals with the role of different chemicals that can be used as penetration enhancer. Keywords: Penetration enhancer, Layer of skin, Fatty alcohol and glycol


Author(s):  
Asif Eqbal ◽  
Vaseem Ahamad Ansari ◽  
Abdul Hafeez ◽  
Farogh Ahsan ◽  
Mohd Imran ◽  
...  

Nanoemulsions are drug transporters for the delivery of therapeutic agents. They possess the small droplet size having the range of 20×10-9-200×10-9m. The main purpose of using Nanoemulsion is to enhance the drug bio- availability of transdermal drug delivery system. With the help of phase diagram, we can select the components of nanoemulsion depending upon formulas ratio of oil phase, surfactant/co-surfactant and water phase. Nanoemulsion directly used as a topical drug delivery in skin organs. The most useable pharmaceutical application has been developed till date to provide systemic effects to penetrating the full thickness of skin organ layer nanoemulsions can be administered through variety of routes such as percutaneous, perioral, topical, transdermal, ocular and parental administration of medicaments. Nanoemulsions are transparent and slightly opalescent. Nanoemulsion can be prepared through various methods. Nanoemulsions are transparent and slightly opalescent. Factor affecting nanoemulsions are surfactant, viscosity, lipophilic, drug content, pH, concentration of each component, and methodology of formulation. It is unfeasible to test all factors at the various levels. Design of formulation when it comes to experimental design it gives an excellent approach through reducing the time and money.


Author(s):  
Lakshmi Usha Ayalasomayajula ◽  
M. Kusuma Kumari ◽  
Radha Rani Earle

In the recent days about 75% of the drugs taken orally are does not show the desired therapeutic effect. Oral conventional dosage forms have several disadvantages such as poor bioavailability due to hepatic first pass metabolism and tendency to produce rapid blood level spikes (Both high and low). Thus, rapid drug levels in the plasma leads to a need of high and/or frequent dosing, which can be both uneconomical and inconvenient. To overcome such disadvantages transdermal drug delivery system was developed. TDDS is such a delivery system which has been explored extensively over the last two decades, with therapeutic success. Transdermal drug delivery systems (TDDS) are the drug delivery systems which involves transportation of drug to epidermal and dermal tissues of the skin for local therapeutic action while major fraction of the drug is transported into the systemic blood circulation. Topical administration of therapeutic agents offers vast advantages over conventional oral and invasive methods of drug delivery. Some of the advantages of transdermal drug delivery include limitation of hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady state plasma level concentration of the drug. This study includes a brief overview of TDDS, its advantages over conventional dosage forms, drug delivery routes across human skin, permeation enhancers, and classification, formulation, methods of preparation and evaluation of transdermal patches.


2017 ◽  
Vol 17 (4) ◽  
pp. 488-494 ◽  
Author(s):  
Pranavi Jadhav ◽  
Ramen Sinha ◽  
Uday Kiran Uppada ◽  
Prabhat K. Tiwari ◽  
A. V. S. S. Subramanya Kumar

Sign in / Sign up

Export Citation Format

Share Document