scholarly journals Biomimetic Analog Silicon Synaptic Circuit with Tunable Reversal Potential

Author(s):  
Ashish Gautam ◽  
Takashi Kohno
2007 ◽  
Vol 98 (6) ◽  
pp. 3397-3410 ◽  
Author(s):  
Youngnam Kang ◽  
Yoshie Dempo ◽  
Atsuko Ohashi ◽  
Mitsuru Saito ◽  
Hiroki Toyoda ◽  
...  

Learning and memory are critically dependent on basal forebrain cholinergic (BFC) neuron excitability, which is modulated profoundly by leak K+ channels. Many neuromodulators closing leak K+ channels have been reported, whereas their endogenous opener remained unknown. We here demonstrate that nitric oxide (NO) can be the endogenous opener of leak K+ channels in the presumed BFC neurons. Bath application of 1 mM S-nitroso- N-acetylpenicillamine (SNAP), an NO donor, induced a long-lasting hyperpolarization, which was often interrupted by a transient depolarization. Soluble guanylyl cyclase inhibitors prevented SNAP from inducing hyperpolarization but allowed SNAP to cause depolarization, whereas bath application of 0.2 mM 8-bromoguanosine-3′,5′-cyclomonophosphate (8-Br-cGMP) induced a similar long-lasting hyperpolarization alone. These observations indicate that the SNAP-induced hyperpolarization and depolarization are mediated by the cGMP-dependent and -independent processes, respectively. When examined with the ramp command pulse applied at –70 mV under the voltage-clamp condition, 8-Br-cGMP application induced the outward current that reversed at K+ equilibrium potential ( EK) and displayed Goldman-Hodgkin-Katz rectification, indicating the involvement of voltage-independent K+ current. By contrast, SNAP application in the presumed BFC neurons either dialyzed with the GTP-free internal solution or in the presence of 10 μM Rp-8-bromo-β-phenyl-1,N2-ethenoguanosine 3′,5′-cyclic monophosphorothioate sodium salt, a protein kinase G (PKG) inhibitor, induced the inward current that reversed at potentials much more negative than EK and close to the reversal potential of Na+-K+ pump current. These observations strongly suggest that NO activates leak K+ channels through cGMP-PKG-dependent pathway to markedly decrease the excitability in BFC neurons, while NO simultaneously causes depolarization by the inhibition of Na+-K+ pump through ATP depletion.


1990 ◽  
Vol 64 (4) ◽  
pp. 1077-1088 ◽  
Author(s):  
P. A. Rutecki ◽  
F. J. Lebeda ◽  
D. Johnston

1. The epileptiform discharges in the CA3 region of the rat hippocampal slice produced by bath application of the potassium channel blocker tetraethylammonium (TEA) were investigated. The effects of a convulsant (5 mM) and subconvulsant (0.5 mM) concentration of TEA on the mossy fiber-evoked synaptic currents were studied by the use of voltage-clamp techniques to determine whether TEA, like 4-aminopyridine (4-AP), another potassium channel blocker and convulsant, increased both inhibitory and excitatory components of the synaptic response. 2. At extracellular potassium concentrations of 2.5 mM, TEA (5 mM) was found to produce spontaneously occurring epileptiform discharges that could be recorded extracellularly. The intracellular correlate of the epileptiform discharge, the paroxysmal depolarizing shift (PDS), could be reversed in polarity by depolarizing the membrane and was associated with a large increase in membrane conductance. These results suggest that a synaptically mediated potential underlies the generation of the epileptiform discharge. 3. The reversal potential for the PDS was dependent on the time, relative to the extracellularly recorded field discharge, at which the measurement was made. In current clamp the mean reversal potential of the PDS measured at the midpoint of the extracellular discharge was -3.3 +/- 2.9 (SE) mV (n = 9). The reversal potential of the PDS was considerably more negative when measured either before or after the midpoint of the extracellular discharge, suggesting the presence of an inhibitory synaptic component. In voltage clamp similar results were obtained and a large conductance change was found to be associated with the PDS. These results suggest that the synaptic conductance associated with the PDS has both inhibitory and excitatory components. 4. TEA increased significantly the mossy fiber-evoked, early-inhibitory conductance. A convulsant concentration (5 mM) increased the conductance measured 15 ms after the stimulus from 39.7 +/- 8.7 to 87.2 +/- 8.0 nS (n = 6). The reversal potential associated with the conductance depolarized from -68.3 +/- 3.4 to -58.3 +/- 4.0 mV after 5 mM TEA. A subconvulsant concentration of TEA (0.5 mM) also increased the conductance of the mossy fiber-evoked response at 15 ms after the stimulus from 49.5 +/- 3.1 to 63.1 +/- 6.1 nS (n = 4) without an associated shift in reversal potential. 5. The late-inhibitory component of the mossy fiber-evoked response, when present, was increased by 5 mM TEA and unchanged by 0.5 mM TEA. 6. The excitatory mossy fiber-evoked synaptic current was studied in the presence of picrotoxin and was found to be increased and prolonged by 5 mM TEA.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 96 (1) ◽  
pp. 195-215 ◽  
Author(s):  
M C Sanguinetti ◽  
N K Jurkiewicz

An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.


2014 ◽  
Vol 11 (95) ◽  
pp. 20140058 ◽  
Author(s):  
Kiyoshi Kotani ◽  
Ikuhiro Yamaguchi ◽  
Lui Yoshida ◽  
Yasuhiko Jimbo ◽  
G. Bard Ermentrout

Gamma oscillations of the local field potential are organized by collective dynamics of numerous neurons and have many functional roles in cognition and/or attention. To mathematically and physiologically analyse relationships between individual inhibitory neurons and macroscopic oscillations, we derive a modification of the theta model, which possesses voltage-dependent dynamics with appropriate synaptic interactions. Bifurcation analysis of the corresponding Fokker–Planck equation (FPE) enables us to consider how synaptic interactions organize collective oscillations. We also develop the adjoint method (infinitesimal phase resetting curve) for simultaneous equations consisting of ordinary differential equations representing synaptic dynamics and a partial differential equation for determining the probability distribution of the membrane potential. This method provides a macroscopic phase response function (PRF), which gives insights into how it is modulated by external perturbation or internal changes of parameters. We investigate the effects of synaptic time constants and shunting inhibition on these gamma oscillations. The sensitivity of rising and decaying time constants is analysed in the oscillatory parameter regions; we find that these sensitivities are not largely dependent on rate of synaptic coupling but, rather, on current and noise intensity. Analyses of shunting inhibition reveal that it can affect both promotion and elimination of gamma oscillations. When the macroscopic oscillation is far from the bifurcation, shunting promotes the gamma oscillations and the PRF becomes flatter as the reversal potential of the synapse increases, indicating the insensitivity of gamma oscillations to perturbations. By contrast, when the macroscopic oscillation is near the bifurcation, shunting eliminates gamma oscillations and a stable firing state appears. More interestingly, under appropriate balance of parameters, two branches of bifurcation are found in our analysis of the FPE. In this case, shunting inhibition can effect both promotion and elimination of the gamma oscillation depending only on the reversal potential.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1985 ◽  
Vol 54 (6) ◽  
pp. 1375-1382 ◽  
Author(s):  
C. W. Bourque ◽  
J. C. Randle ◽  
L. P. Renaud

Intracellular recordings of rat supraoptic nucleus neurons were obtained from perfused hypothalamic explants. Individual action potentials were followed by hyperpolarizing afterpotentials (HAPs) having a mean amplitude of -7.4 +/- 0.8 mV (SD). The decay of the HAP was approximated by a single exponential function having a mean time constant of 17.5 +/- 6.1 ms. This considerably exceeded the cell time constant of the same neurons (9.5 +/- 0.8 ms), thus indicating that the ionic conductance underlying the HAP persisted briefly after each spike. The HAP had a reversal potential of -85 mV and was unaffected by intracellular Cl- ionophoresis of during exposure to elevated extracellular concentrations of Mg2+. In contrast, the peak amplitude of the HAP was proportional to the extracellular Ca2+ concentration and could be reversibly eliminated by replacing Ca2+ with Co2+, Mn2+, or EGTA in the perfusion fluid. During depolarizing current pulses, evoked action potential trains demonstrated a progressive increase in interspike intervals associated with a potentiation of successive HAPs. This spike frequency adaptation was reversibly abolished by replacing Ca2+ with Co2+, Mn2+, or EGTA. Bursts of action potentials were followed by a more prolonged afterhyperpolarization (AHP) whose magnitude was proportional to the number of impulses elicited (greater than 20 Hz) during a burst. Current injection revealed that the AHP was associated with a 20-60% decrease in input resistance and showed little voltage dependence in the range of -70 to -120 mV. The reversal potential of the AHP shifted with the extracellular concentration of K+ [( K+]o) with a mean slope of -50 mV/log[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 135 (3) ◽  
pp. 275-295 ◽  
Author(s):  
Li Dai ◽  
Vivek Garg ◽  
Michael C. Sanguinetti

Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+.


2007 ◽  
Vol 19 (9) ◽  
pp. 2281-2300 ◽  
Author(s):  
R. Jacob Vogelstein ◽  
Udayan Mallik ◽  
Eugenio Culurciello ◽  
Gert Cauwenberghs ◽  
Ralph Etienne-Cummings

We present a multichip, mixed-signal VLSI system for spike-based vision processing. The system consists of an 80 × 60 pixel neuromorphic retina and a 4800 neuron silicon cortex with 4,194,304 synapses. Its functionality is illustrated with experimental data on multiple components of an attention-based hierarchical model of cortical object recognition, including feature coding, salience detection, and foveation. This model exploits arbitrary and reconfigurable connectivity between cells in the multichip architecture, achieved by asynchronously routing neural spike events within and between chips according to a memory-based look-up table. Synaptic parameters, including conductance and reversal potential, are also stored in memory and are used to dynamically configure synapse circuits within the silicon neurons.


Sign in / Sign up

Export Citation Format

Share Document