flufenamic acid
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 55)

H-INDEX

38
(FIVE YEARS 4)

Author(s):  
Rahul Kumar ◽  
Devendra Singh Rawat ◽  
Amit K. Thakur ◽  
Pranava Chaudhari ◽  
Nilanjana Banerjee

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caterina Sellitto ◽  
Leping Li ◽  
Thomas W. White

AbstractMutations in five different genes encoding connexin channels cause eleven clinically defined human skin diseases. Keratitis ichthyosis deafness (KID) syndrome is caused by point mutations in the GJB2 gene encoding Connexin 26 (Cx26) which result in aberrant activation of connexin hemichannels. KID syndrome has no cure and is associated with bilateral hearing loss, blinding keratitis, palmoplantar keratoderma, ichthyosiform erythroderma and a high incidence of childhood mortality. Here, we have tested whether a topically applied hemichhanel inhibitor (flufenamic acid, FFA) could ameliorate the skin pathology associated with KID syndrome in a transgenic mouse model expressing the lethal Cx26-G45E mutation. We found that FFA blocked the hemichannel activity of Cx26-G45E in vitro, and substantially reduced epidermal pathology in vivo, compared to untreated, or vehicle treated control animals. FFA did not reduce the expression of mutant connexin hemichannel protein, and cessation of FFA treatment allowed disease progression to continue. These results suggested that aberrant hemichannel activity is a major driver of skin disease in KID syndrome, and that the inhibition of mutant hemichannel activity could provide an attractive target to develop novel therapeutic interventions to treat this incurable disease.


2021 ◽  
Vol 28 ◽  
Author(s):  
Sara Yazdani ◽  
Seyed Mohammad Ghoreishi ◽  
Neda Habibi

Background: Due to their solid-like porous structure, molecular organogel and microcrystal structures have the capabilities of loading drug molecules, encapsulation, and extended release, all considered as essential properties in drug delivery applications. Phases of these structures, however, depend on the solvent used during the gelation process. Objective: Understanding the phase transition between organogel and microcrystal structures through adjusting the mixture ratio of different co-solvents. Method: Short peptide Diphenylalanine as the gelation building block was used due to its amino acid sequences that can be exactly selected at its molecular levels. Ethanol as a polar solvent was used in combination with four other co-solvents with different polarity levels, namely Xylene, Toluene, Acetone, and Dimethyl Sulfoxide. The morphology of molecular structures of each co-solvent combination at each ratio level was examined as well as the loading and release properties for a non-polar Flufenamic Acid drug. Results: The resultant structure wasaffected by the polarity of the co-solvents; in particular, in the sample containing 25 μg/ml of the drug, 94% of the drug amount was loaded inside the organogel. By increasing the drug concentration to 50, 75, and 100 μg/ml, the loading capability decreased to 76%, 47%, and 33%, respectively. Conclusion: Molecular organogels have excellent capabilities of loading drug molecules, while microcrystal structures have higher release capacity. The findings of this study reveal how to best design a gelation method to obtain maximum loading or release properties for a particular peptide-based drug delivery application.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1608
Author(s):  
Javiana Luengo ◽  
Marc Schneider ◽  
Anna M. Schneider ◽  
Claus-Michael Lehr ◽  
Ulrich F. Schaefer

The steady improvement and optimization of transdermal permeation is a constant and challenging pharmaceutical task. In this study the influence of poly(lactide-co-glycolide) (PLGA) nanoparticles on the dermal permeation of the anti-inflammatory drug flufenamic acid (FFA) was investigated. For this aim, different vehicles under non-buffered and buffered conditions and different skin models (human heat separated epidermis and reconstructed human epidermis equivalents) were tested. Permeation experiments were performed using static Franz diffusion cells under infinite dosing conditions. Already the presence of drug-free nanoparticles increased drug permeation across the skin. Drug permeation was even enhanced when applying drug-loaded nanoparticles. In contrast, buffered vehicles with different pH values (pH 5.4–7.4) revealed the influence of the pH on the permeation of FFA. The change of the surrounding pH of the biodegradable nanoparticulate system was demonstrated and visualized using pH-sensitive fluorescent probes. While a potential contribution of hair follicles could be ruled out, our data suggest that the enhanced permeation of FFA through human skin in the presence of PLGA nanoparticles is mediated by a locally decreased pH during hydrolytic degradation of this polymer. This hypothesis is supported by the observation that skin permeation of the weak base caffeine was not affected.


Polymer Korea ◽  
2021 ◽  
Vol 45 (5) ◽  
pp. 680-687
Author(s):  
Jun-Hyuk Anh ◽  
Jae-Woon Nah ◽  
Gyeong-Won Jeong

Author(s):  
Nathanael Sallada ◽  
Yongjun Li ◽  
Bryan Berger ◽  
Matthew S. Lamm

2021 ◽  
Author(s):  
Rabab Fatima ◽  
Mousmee Sharma ◽  
Parteek Prasher

Aim: Controlled release of flufenamic acid by helical V-amylose to achieve enzyme-responsive, targeted release of the cargo drug. Materials & methods: Solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS NMR), Fourier transform IR and x-ray diffraction (XRD) analysis validated the entrapment of flufenamic acid inside the helical structure of V-amylose. Scanning electron microscopy (SEM) investigations established the morphology of conjugates in simulated gastric environment (pH 1.2) and simulated intestine media (pH 7.2) containing hydrolyzing enzyme. Results & discussion: V-amylose–flufenamic acid complex displayed a sustained release of flufenamic acid for 12 h with a marked stability in simulated gastric pH, while showing a controlled release of drug in simulated intestine media. Conclusion: The V-amylose–flufenamic acid system achieves intestine-targeted delivery of flufenamic acid. The controlled release of flufenamic acid may ensure minimal ulcerogenicity and application as enteric coatings.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Alexandre Gagnon ◽  
Léa Mélin ◽  
Shuay Abdullayev ◽  
Ahmed Fnaiche ◽  
Victoria Vu ◽  
...  

Pharmacia ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 449-461
Author(s):  
Ammar I. Al-Bayati ◽  
Ammar A. Razzak Mahmood ◽  
Zainab A. Al-Mazaydeh ◽  
Majdoleen S. Rammaha ◽  
Rheda I. Al-bayati ◽  
...  

Novel compounds (6–10) were synthesized and confirmed by spectroscopic analysis, including AT-IR, 1HNMR and CHNS. Their cytotoxic effect was evaluated by MTT assay against two cancer cell lines and two normal cell types. Compound 7 exhibited anticancer activity against MCF-7 breast cancer cell line (GI50 = 63.9 µg/ml, 148 µM), without any effect against A549 lung cancer cells, or the normal cells. Compound 7 caused cytotoxicity in MCF-7 breast cancer cells by apoptotic cell death, as suggested by fragmented nuclei after DAPI staining and agarose gel electrophoresis. In addition, treating MCF-7 cells with compound 7 resulted in an increase in the level of caspase 9 mRNA level, and its activation. Moreover, compound 7-treated MCF-7 cells showed enhanced cytochrome c release from the mitochondria to the cytosol, signifying an induction of the intrinsic apoptotic pathway. Finally, compound 7 exhibited epidermal growth factor receptor (EGFR) kinase inhibitory activity at (EC50 = 0.13 µM), which was matched by molecular docking studies that showed compound 7 might be an important EGFR kinase inhibitor.


Sign in / Sign up

Export Citation Format

Share Document