scholarly journals Research on Braking Force Distribution Strategy of Composite Braking System of Electric Vehicle

Author(s):  
Kuiyang Wang ◽  
Liang Zhu ◽  
Shanfeng Wang
2014 ◽  
Vol 543-547 ◽  
pp. 1529-1532 ◽  
Author(s):  
Yu Ting Huang ◽  
Liang Chu ◽  
Yi Yang ◽  
Shi Tong Zhang

This paper is based on a type of hybrid electric vehicles regenerative braking system. The target is to reduce the fuel consumption and improve the energy recovering rate. In this paper,a new braking force distribution strategy that based on two kinds of working condition will be studied. And it will be validated in MATLAB/Simulink and CRUISE.


Author(s):  
Lingying Zhao ◽  
Min Ye ◽  
Xinxin Xu

To address the comfort of an electric vehicle, a coupling mechanism between mechanical friction braking and electric regenerative braking was studied. A cooperative braking system model was established, and comprehensive simulations and system optimizations were carried out. The performance of the cooperative braking system was analyzed. The distribution of the braking force was optimized by an intelligent method, and the distribution of a braking force logic diagram based on comfort was proposed. Using an intelligent algorithm, the braking force was distributed between the two braking systems and between the driving and driven axles. The experiment based on comfort was carried out. The results show that comfort after optimization is improved by 76.29% compared with that before optimization by comparing RMS value in the time domain. The reason is that the braking force distribution strategy based on the optimization takes into account the driver’s braking demand, the maximum braking torque of the motor, and the requirements of vehicle comfort, and makes full use of the braking torque of the motor. The error between simulation results and experimental results is 5.13%, which indicates that the braking force’s distribution strategy is feasible.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987776 ◽  
Author(s):  
Shengqin Li ◽  
Bo Yu ◽  
Xinyuan Feng

Electric vehicles can convert the kinetic energy of the vehicle into electric energy for recycling. A reasonable braking force distribution strategy is the key to ensure braking stability and the energy recovery rate. For an electric vehicle, based on the ECE regulation curve and ideal braking force distribution (I curve), the braking force distribution strategy of the front and rear axles is designed to study the braking energy recovery control strategy. The fuzzy control method is adopted while the charging power limit of the battery is considered to correct the regenerative braking torque of the motor, the ratio of the regenerative braking force of the motor to the front axle braking force is designed according to different braking strengths, then the braking force distribution and braking energy recovery control strategies for regenerative braking and friction braking are developed. The simulation model of combined vehicle and energy recovery control strategy is established by Simulink and Cruise software. The braking energy recovery control strategy of this article is verified under different braking conditions and New European Driving Cycle conditions. The results show that the control strategy proposed in this article meets the requirements of braking stability. Under the condition of initial state of charge of 75%, the variation of state of charge of braking control strategy in this article is reduced by 8.22%, and the state of charge of braking strategy based on I curve reduces by 9.12%. The braking force distribution curves of the front and rear axle are in line with the braking characteristics, can effectively recover the braking energy, and improve the battery state of charge. Taking the using range of 95%–5% of battery state of charge as calculation target, the cruising range of vehicle with braking control strategy of this article increases to 136.64 km, which showed that the braking control strategy in this article could increase the cruising range of the electric vehicle.


2015 ◽  
Vol 740 ◽  
pp. 196-200
Author(s):  
Qing Nian Wang ◽  
Shi Xin Song ◽  
Shao Kun Li ◽  
Wei Chen Zhao ◽  
Feng Xiao

With the analysis of influence factors on regenerative braking in electro-mechanical braking system, and considering the power battery charging characteristics, a regenerative braking system control strategy for electric vehicle is researched in this paper. The models of the motor and the whole vehicle are built in AMESim. The control effects and the braking force distribution on front and rear wheels of the control strategy in an FTP-72 driving cycle are simulated and analyzed. The simulation results show that the control strategy could be utilized in the 4WD electric vehicles. The ideal braking force distribution on front and rear wheels and the high amount of recovery energy could be achieved.


Sign in / Sign up

Export Citation Format

Share Document