scholarly journals APSSR: Adaptive Packet Size Selection Based Routing Protocol for Underwater Acoustic Sensor Networks

Underwater Acoustic Sensor Networks offer very promising solutions to monitor the aqueous environments. Due to the distinctive characteristics of UASNs, it is very challenging to design a routing protocol that can achieve maximum data delivery ratio in the network. The main challenge is the communication medium (acoustic links) that is subject to temporary attenuation and high bit error rate (BER), which limits the throughput efficiency of the Network. Besides this, another major issue is the continuous movement of nodes due to water currents and the availability of limited resources. Due to nodes mobility distance among sensor nodes and consequently, BER varies, which have a direct impact on packet size, hence, leads to high packet loss and low data delivery ratio. To achieve a high data delivery ratio, the selection of optimal packet size is of utmost importance. Consequently, the selection of next-hop forwarding node based on optimal packet size is needed. Therefore, in this paper, we propose an adaptive routing protocol named Adaptive Packet Size Selection Based Routing (APSSR) Protocol for UASNs. APSSR determines the optimal packet size adaptively based on both varying distances between sensor nodes and BER and selects the next hop based on optimal packet size and BER. The simulation results show greater network performance in terms of Network Lifetime, Data Reception Ratio at Sink node, Average Network Delay, Packet Reception Ratio, and Packets Drop Ratio

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guangjie Han ◽  
Na Bao ◽  
Li Liu ◽  
Daqiang Zhang ◽  
Lei Shu

Underwater Acoustic Sensor Networks (UASNs) have drawn great attention for their potential value in ocean monitoring and offshore exploration. In order to make the underwater application possible, the unique characteristics of underwater acoustic channels and continuous node movement inspired the emergence of routing protocols for underwater environment. In this paper, we introduce and compare four prominent routing protocols proposed for UASNs, namely, H2-DAB, GEDAR, E-PULRP, and PER. Performances of the routing protocols are evaluated in terms of the average number of control packets, end-to-end delay, data delivery ratio, and total energy consumption. The impact of water currents on the routing algorithms is also analyzed in our simulation. Experimental results demonstrate that E-PULRP provides high data delivery ratio at the cost of end-to-end delay. H2-DAB has better real-time performance for minimal delay transmission. GEDAR efficiently addresses the problem of void region without introducing extra energy. PER requires the most control packets in the process of routing establishment. Our work aims to provide useful insights to select appropriate routing protocols to fulfil different application requirements in UASNs.


Monitoring and maintaining aquatic environment is the universal need and Underwater Acoustic Sensor Networks (UASN) is an emerging technology plays a major role in acoustic data acquistion. The data acquisition is challenging issue in UASN due to its communication characteristics. Though, there are several geo-opportunistic routing protocols were explored to improve the data acquisition it can be still improved by enhanced routing technique. The existing Geo-graphical depth adjustment routing (GEDAR) uses Global Positioning System(GPS) based notes for improving data acquisition, however it consumes more energy and increases overhead. We make an attempt to study about efficient data acquisition process and its path reliability. The proposed Itinerary aware routing protocol(IARP) acquires neighboring node’s information for constructing efficient and reliable link with minimum information which improves data delivery ratio with minimum energy consumption. The proposed IARP increases 11% packet delivery ratio and reduces delay by 13%, and energy consumption by 9% comparing with existing GEDAR based algorithm. IARP also performs better than Depth based routing (DBR).


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2885 ◽  
Author(s):  
Sunhyo Kim ◽  
Jee Woong Choi

Underwater acoustic sensor networks have recently attracted considerable attention as demands on the Internet of Underwater Things (IoUT) increase. In terms of efficiency, it is important to achieve the maximum communication coverage using a limited number of sensor nodes while maintaining communication connectivity. In 2017, Kim and Choi proposed a new deployment algorithm using the communication performance surface, which is a geospatial information map representing the underwater acoustic communication performance of a targeted underwater area. In that work, each sensor node was a vertically separated hydrophone array, which measures acoustic pressure (a scalar quantity). Although an array receiver is an effective system to eliminate inter-symbol interference caused by multipath channel impulse responses in underwater communication environments, a large-scale receiver system degrades the spatial efficiency. In this paper, single-vector sensors measuring the particle velocity are used as underwater sensor nodes. A single-vector sensor can be considered to be a single-input multiple-output communication system because it measures the three directional components of particle velocity. Our simulation results show that the optimal deployment obtained using single-vector sensor nodes is more effective than that obtained using a hydrophone (three-channel vertical-pressure sensor) array.


Sign in / Sign up

Export Citation Format

Share Document