scholarly journals Safe Data Transfer Using Logic Gate Based Cryptographic Technique in Wireless Sensor Network

Wireless Sensor Networks consist of independent sensor nodes attached to one base station. In wireless sensor networks, nodes are connected to sensing environment and communicate the data to the base station. As WSNs continues to grow, they become vulnerable to attacks and hence the need for operative security techniques. Applications of wireless sensor networks demands for the well-organized and secure communication. For the solution of well-organized and reliable security, we need cryptography algorithms which provide good solutions. For providing reliable security techniques mainly data confidentiality, key management is used. Identification of suitable cryptographic techniques for WSNs is an important challenge due to limitation of energy, computation capability and memory of the sensor nodes. Symmetric cryptography techniques do not act well when the number of sensor nodes increases. Hence asymmetric key cryptographic techniques are widely used. Here we propose an electronic logic gate based symmetric Cryptographic technique which is more suitable for small and medium WSNs.

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chin-Ling Chen ◽  
Chih-Cheng Chen ◽  
De-Kui Li

In recent years, wireless sensor network (WSN) applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.


Author(s):  
Bahae ABIDI ◽  
Abdelillah JILBAB ◽  
Mohamed EL HAZITI

Even in difficult places to reach, the new networking technique allows the easy deployment of sensor networks, although these wireless sensor networks confront a lot of constraints. The major constraint is related to the quality of information sent by the network. The wireless sensor networks use different methods to achieve data to the base station. Data aggregation is an important one, used by these wireless sensor networks. But this aggregated data can be subject to several types of attacks and provides security is necessary to resist against malicious attacks, secure communication between severely resource constrained sensor nodes while maintaining the flexibility of the topology changes. Recently, several secure data aggregation schemes have been proposed for wireless sensor networks, it provides better security compared with traditional aggregation. In this paper, we try to focus on giving a brief statement of the various approaches used for the purpose of secure data aggregation in wireless sensor networks.


2013 ◽  
Vol 10 (2) ◽  
pp. 589-609 ◽  
Author(s):  
Chin-Ling Chen ◽  
Yu-Ting Tsai ◽  
Aniello Castiglione ◽  
Francesco Palmieri

Wireless sensor networks (WSN) have become increasingly popular in monitoring environments such as: disaster relief operations, seismic data collection, monitoring wildlife and military intelligence. The sensor typically consists of small, inexpensive, battery-powered sensing devices fitted with wireless transmitters, which can be spatially scattered to form an ad hoc hierarchically structured network. Recently, the global positioning system (GPS) facilities were embedded into the sensor node architecture to identify its location within the operating environment. This mechanism may be exploited to extend the WSN?s applications. To face with the security requirements and challenges in hierarchical WSNs, we propose a dynamic location-aware key management scheme based on the bivariate polynomial key predistribution, where the aggregation cluster nodes can easily find their best routing path to the base station, by containing the energy consumption, storage and computation demands in both the cluster nodes and the sensor nodes. This scheme is robust from the security point of view and able to work efficiently, despite the highly constrained nature of sensor nodes.


2017 ◽  
Vol 40 (13) ◽  
pp. 3788-3799 ◽  
Author(s):  
Behrouz Vaseghi ◽  
Mohammad Ali Pourmina ◽  
Saleh Mobayen

This paper considers the finite-time chaos synchronization of Chua chaotic oscillators based on the secure communication scheme in wireless sensor networks. The modified Chua oscillators are added to the base station and sensor nodes to generate the chaotic signals. Two methods are proposed for the finite-time synchronization of the modified Chua systems with uncertain parameters. In the first method, by using the Lyapunov stability theory, control law is suggested to achieve finite-time chaos synchronization. In order to increase the robustness of the controller, in the second method, a sliding mode controller is applied to the wireless sensor network. Synchronization between the base station and each of the sensor nodes is realized by multiplying a selection matrix by the specified chaotic signal, which is broadcasted by the base station to the sensor nodes. The mathematical proofs confirm that the proposed control law is correct and finally, the simulation results are presented to show the efficiency of the proposed technique.


2014 ◽  
Vol 568-570 ◽  
pp. 546-549
Author(s):  
Yan Ling Cui

The communication security problems for wireless sensor networks are exacerbated by the limited power and energy of the sensor devices. The focus of this paper is to design a lightweight group key management scheme to safeguard the data packet passing on the sensor networks. The design of the protocol is motivated by the observation that many sensor nodes in the network play different roles. We describe the design and implementation of establishing different pairwise keys based on LEACH. The protocol contains group communication policies, group membership requirements for secure communication under different types of attacks.


2020 ◽  
Vol 8 (5) ◽  
pp. 3847-4851

The use of Wireless Sensor Networks (WSN) in the field of military, battlefield, healthcare applications etc has seen a plethora of growth towards variety of sensory devices. Irrespective of different locations, the sensor nodes has to do its task. Hence, the dynamic wireless sensor networks should ensure better quality of sensor nodes that covers wider network area and additional services in relative to static WSNs systems. By doing so, it requires secure data communication among the sensor nodes in wireless environment. Key Management is the recent security concept enabled to provide secure communication between sender and receiver nodes. In this paper, we have proposed efficient key updates systems between the nodes. In any scenario, the nodes may join or leaves the network environment which facilitates to initiate a secret key between intended sender and intended receiver. A certificate less key secrecy system is designed for secure communication in wireless links. By designing so, we have addressed the issues like node authentication, data confidentiality and data integrity. Experimental analyses have shown the effectiveness of proposed system.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 45
Author(s):  
Ramu Ramu Kuchipudi ◽  
Dr. Ahmed Abdul Moiz Qyser ◽  
Dr. V V S S S Balaram

Key distribution in Wireless sensor networks is crucial whenever they deployed in critical applications. Cryptography is used to protect sensitive information from disclosure. Key management is important component in cryptography. Cryptography is not useful if keys are disclosed to attackers. Designing an efficient key management for sensor network is a difficult task because of scarcity of computing and memory resources. An efficient key distribution approach is proposed by using mobile agent paradigm rather than client server model. The proposed approach will use good features of both symmetric and asymmetric cryptography. Mobile Agents are used to generate public and private key pairs, update keys and revocation of keys. The proposed scheme in the first level will use mobile agents for public key dissemination and in second level sensor nodes can involve in constructing symmetric keys for secure communication through mutual authentication and encryption with those keys. The proposed method is implemented using NS2 Simulator and results are compared with existing similar methods in terms of evaluation parameters like throughput and resiliency. The proposed method is improved when it is compared with similar existing methods. 


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Author(s):  
Hoang Dang Hai ◽  
Thorsten Strufe ◽  
Pham Thieu Nga ◽  
Hoang Hong Ngoc ◽  
Nguyen Anh Son ◽  
...  

Sparse  Wireless  Sensor  Networks  using several  mobile  nodes  and  a  small  number  of  static sensor  nodes  have  been  widely  used  for  many applications,  especially  for  traffic-generated  pollution monitoring.  This  paper  proposes  a  method  for  data collection and forwarding using Mobile Elements (MEs), which are moving on predefined trajectories in contrast to previous works that use a mixture of MEsand static nodes. In our method, MEscan be used as data collector as well as dynamic bridges for data transfer. We design the  trajectories  in  such  a  way,  that  they  completely cover  the  deployed  area  and  data  will  be  gradually forwarded  from  outermost  trajectories  to  the  center whenever  a  pair  of MEs contacts  each  other  on  an overlapping road distance of respective trajectories. The method  is based  on  direction-oriented  level  and  weight assignment.  We  analyze  the  contact  opportunity  for data  exchange  while MEs move.  The  method  has  been successfully tested for traffic pollution monitoring in an urban area.


Author(s):  
Jyothi R. ◽  
Nagaraj G. Cholli

Wireless sensor network (WSN) have limited bandwidth, low computational functions, energy constraints. Inspite of these constraints, WSN is useful where communication happens without infrastructure support. The main concern of WSN is the security as the sensor nodes may be attacked and information may be hacked. Security of WSN should have the capability to ensure that the message received was sent by the particular sent node and not modified during transmission. WSN applications require lightweight and strong authentication mechanisms for obtaining data from unprivileged users. In wireless sensor networks, authentication is the effective method to stop unauthorized and undisrupted communication service. In order to strengthen the authenticated communication, several researchers have developed mechanisms. Some of the techniques work with identifying the attacked node or detecting injected bogus message in the network. Encryption and decryption are the popular methods of providing the security. These are based on either public-key or symmetric-key cryptosystems Many of the existing solutions have limitations in communication and computational expertise. Also, the existing mechanisms lack in providing strength and scalability of the network. In order address these issues; a polynomial based method was introduced in recent days. Key distribution is a significant aspect in key management in WSNs. The simplest method of distribution of key is by hand which was used in the days of couriers. Now a days, most distribution of keys is done automatically. The automatic distribution of keys is essential and convenient in networks that require two parties to transmit their security keys in the same communication medium. In this work, a new type of key exchange mechanism is proposed. The proposed method for authentication among sensor nodes proves to be promising as per the simulation results. The nodes which are unknown to each other setup a private however arbitrary key for the symmetric key cryptosystem.


Sign in / Sign up

Export Citation Format

Share Document