scholarly journals Music Genre Classification using Optimized Sequential Neural Network

Music makes up a huge portion of the contents stored and used over the internet, with several sites and applications developed solely to provide music-related services to their users/ customers.Some of the most challenging tasks in this scenario would include music classification based on languages and genres, playlist suggestions based on music history, song suggestions based on playlist contents, top genres / songs based on listeners' rating, likes, number of streams, song loops, popularity of artists based on number of songs released per year, hit songs per year, etc. One of the most important stages to solve the above-mentioned challenges would be music genre classification. It would be impractical to analyze each and every song in a given database to identify and classify music genres, even though human beings are better at performing such tasks. Hence, useful Machine Learning algorithms and Deep Learning approaches may be used for accomplishing such tasks with ease. A thorough analysis to understand the different uses of Machine Learning and Deep Learning algorithms and relevance of such algorithms with respect to situations would be made to highlight and contrast the advantages and disadvantages of each approach. The outcomes of the optimized models would be visualized and comparedto the expected outcomes for better perception.

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7527
Author(s):  
Mugdim Bublin

Distributed Acoustic Sensing (DAS) is a promising new technology for pipeline monitoring and protection. However, a big challenge is distinguishing between relevant events, like intrusion by an excavator near the pipeline, and interference, like land machines. This paper investigates whether it is possible to achieve adequate detection accuracy with classic machine learning algorithms using simulations and real system implementation. Then, we compare classical machine learning with a deep learning approach and analyze the advantages and disadvantages of both approaches. Although acceptable performance can be achieved with both approaches, preliminary results show that deep learning is the more promising approach, eliminating the need for laborious feature extraction and offering a six times lower event detection delay and twelve times lower execution time. However, we achieved the best results by combining deep learning with the knowledge-based and classical machine learning approaches. At the end of this manuscript, we propose general guidelines for efficient system design combining knowledge-based, classical machine learning, and deep learning approaches.


2019 ◽  
Vol 27 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Qiang Wei ◽  
Zongcheng Ji ◽  
Zhiheng Li ◽  
Jingcheng Du ◽  
Jingqi Wang ◽  
...  

AbstractObjectiveThis article presents our approaches to extraction of medications and associated adverse drug events (ADEs) from clinical documents, which is the second track of the 2018 National NLP Clinical Challenges (n2c2) shared task.Materials and MethodsThe clinical corpus used in this study was from the MIMIC-III database and the organizers annotated 303 documents for training and 202 for testing. Our system consists of 2 components: a named entity recognition (NER) and a relation classification (RC) component. For each component, we implemented deep learning-based approaches (eg, BI-LSTM-CRF) and compared them with traditional machine learning approaches, namely, conditional random fields for NER and support vector machines for RC, respectively. In addition, we developed a deep learning-based joint model that recognizes ADEs and their relations to medications in 1 step using a sequence labeling approach. To further improve the performance, we also investigated different ensemble approaches to generating optimal performance by combining outputs from multiple approaches.ResultsOur best-performing systems achieved F1 scores of 93.45% for NER, 96.30% for RC, and 89.05% for end-to-end evaluation, which ranked #2, #1, and #1 among all participants, respectively. Additional evaluations show that the deep learning-based approaches did outperform traditional machine learning algorithms in both NER and RC. The joint model that simultaneously recognizes ADEs and their relations to medications also achieved the best performance on RC, indicating its promise for relation extraction.ConclusionIn this study, we developed deep learning approaches for extracting medications and their attributes such as ADEs, and demonstrated its superior performance compared with traditional machine learning algorithms, indicating its uses in broader NER and RC tasks in the medical domain.


Author(s):  
Rachaell Nihalaani

Abstract: As Plato once rightfully said, ‘Music gives a soul to the universe, wings to the mind, flight to the imagination and life to everything.’ Music has always been an important art form, and more so in today’s science-driven world. Music genre classification paves the way for other applications such as music recommender models. Several approaches could be used to classify music genres. In this literature, we aimed to build a machine learning model to classify the genre of an input audio file using 8 machine learning algorithms and determine which algorithm is the best suitable for genre classification. We have obtained an accuracy of 91% using the XGBoost algorithm. Keywords: Machine Learning, Music Genre Classification, Decision Trees, K Nearest Neighbours, Logistic regression, Naïve Bayes, Neural Networks, Random Forest, Support Vector Machine, XGBoost


2021 ◽  
Vol 16 (10) ◽  
pp. 186-188
Author(s):  
A. Saran Kumar ◽  
R. Rekha

Drug-Drug interaction (DDI) refers to change in the reaction of a drug when the person consumes other drug. It is the main cause of avertable bad drug reactions causing major issues on the patient’s health and the information systems. Many computational techniques have been used to predict the adverse effects of drug-drug interactions. However, these methods do not provide adequate information required for the prediction of DDI. Machine learning algorithms provide a set of methods which can increase the accuracy and success rate for well-defined issues with abundant data. This study provides a comprehensive survey on most popular machine learning and deep learning algorithms used by the researchers to predict DDI. In addition, the advantages and disadvantages of various machine learning approaches have also been discussed here.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shubham Bharti ◽  
Arun Kumar Yadav ◽  
Mohit Kumar ◽  
Divakar Yadav

PurposeWith the rise of social media platforms, an increasing number of cases of cyberbullying has reemerged. Every day, large number of people, especially teenagers, become the victim of cyber abuse. A cyberbullied person can have a long-lasting impact on his mind. Due to it, the victim may develop social anxiety, engage in self-harm, go into depression or in the extreme cases, it may lead to suicide. This paper aims to evaluate various techniques to automatically detect cyberbullying from tweets by using machine learning and deep learning approaches.Design/methodology/approachThe authors applied machine learning algorithms approach and after analyzing the experimental results, the authors postulated that deep learning algorithms perform better for the task. Word-embedding techniques were used for word representation for our model training. Pre-trained embedding GloVe was used to generate word embedding. Different versions of GloVe were used and their performance was compared. Bi-directional long short-term memory (BLSTM) was used for classification.FindingsThe dataset contains 35,787 labeled tweets. The GloVe840 word embedding technique along with BLSTM provided the best results on the dataset with an accuracy, precision and F1 measure of 92.60%, 96.60% and 94.20%, respectively.Research limitations/implicationsIf a word is not present in pre-trained embedding (GloVe), it may be given a random vector representation that may not correspond to the actual meaning of the word. It means that if a word is out of vocabulary (OOV) then it may not be represented suitably which can affect the detection of cyberbullying tweets. The problem may be rectified through the use of character level embedding of words.Practical implicationsThe findings of the work may inspire entrepreneurs to leverage the proposed approach to build deployable systems to detect cyberbullying in different contexts such as workplace, school, etc and may also draw the attention of lawmakers and policymakers to create systemic tools to tackle the ills of cyberbullying.Social implicationsCyberbullying, if effectively detected may save the victims from various psychological problems which, in turn, may lead society to a healthier and more productive life.Originality/valueThe proposed method produced results that outperform the state-of-the-art approaches in detecting cyberbullying from tweets. It uses a large dataset, created by intelligently merging two publicly available datasets. Further, a comprehensive evaluation of the proposed methodology has been presented.


Author(s):  
Dr. S. Ponlatha ◽  
Mathisalini B ◽  
Deepthisri K. A ◽  
Kalaiyarasi. M ◽  
Kowshika. V

Music genre is a conventional category that predicts the genre of music belonging to tradition or set of conventions. A music platform, with total assets of $26 billion, is ruling the music streaming stage today. At present, it has a huge number of tunes and it is information base and claims to have the right music score for everybody. Like, Spotify, Amazon music, Wynk has put a great deal in examination to further develop the manner in which clients find and pay attention to music. AI is at the centre of their examination. From NLP to Collaborative sifting to Deep Learning, All music platforms utilizes them all. Tunes are examined dependent on their advanced marks for certain elements, including rhythm, acoustics, energy, danceability, and so forth, to answer that incomprehensible old first-date inquiry. Organizations these days use music arrangement, either to have the option to put suggestions to their clients (like Spotify, Soundcloud) or just as an item (for instance, Shazam). Deciding music sorts is the initial phase toward that path. AI procedures have ended up being very fruitful in removing patterns and examples from a huge information pool. Similar standards are applied in Music Analysis moreover. Machine learning techniques are achieved in some recent years and rarely in deep learning. Most of the current music genre classification uses Machine learning techniques. In this, we present a music dataset which includes many genres like Rock, Pop, folk, Classical and many genres. A Deep learning approach is used in order to train and classify the system using KNN.


Sign in / Sign up

Export Citation Format

Share Document