scholarly journals RADAR-BASED STOCHASTIC PRECIPITATION NOWCASTING USING THE SHORT-TERM ENSEMBLE PREDICTION SYSTEM (STEPS) (CASE STUDY: PANGKALAN BUN WEATHER RADAR)

Author(s):  
Abdullah Ali ◽  
S. Supriatna ◽  
Umi Sa'adah

Nowcasting, or the short-term forecasting of precipitation, is urgently needed to support the mitigation circle in hydrometeorological disasters. Pangkalan Bun weather radar is single-polarization radar with a 200 km maximum range and which runs 10 elevation angles in 10 minutes with a 250 meters spatial resolution. There is no terrain blocking around the covered area. The Short-Term Ensemble Prediction System (STEPS) is one of many algorithms that is used to generate precipitation nowcasting, and is already in operational use. STEPS has the advantage of producing ensemble nowcasts, by which nowcast uncertainties can be statistically quantified. This research aims to apply STEPS to generate stochastic nowcasting in Pangkalan Bun weather radar and to analyze its advantages and weaknesses. Accuracy is measured by counting the possibility of detection and false alarms under the 5 dBZ threshold and plotting them in a relative operating characteristic (ROC) curve. The observed frequency and forecast probability is represented by a reliability diagram to evaluate nowcast reliability and sharpness. Qualitative analysis of the results showed that the STEPS ensemble produces smoothed reflectivity fields that cannot capture extreme values in an observed quasi-linear convective system (QLCS), but that the algorithm achieves good accuracy under the threshold used, up to 40 minutes lead time. The ROC shows a curved upper left-hand corner, and the reliability diagram is an almost perfect nowcast diagonal line.

2021 ◽  
Author(s):  
Carlos Velasco-Forero ◽  
Jayaram Pudashine ◽  
Mark Curtis ◽  
Alan Seed

<div> <p>Short-term precipitation forecast plays a vital role for minimizing the adverse effects of heavy precipitation events such as flash flooding.  Radar rainfall nowcasting techniques based on statistical extrapolations are used to overcome current limitations of precipitation forecasts from numerical weather models, as they provide high spatial and temporal resolutions forecasts within minutes of the observation time. Among various algorithms, the Short-Term Ensemble Prediction System (STEPS) provides rainfall fields nowcasts in a probabilistic sense by accounting the uncertainty in the precipitation forecasts by means of ensembles, with spatial and temporal characteristic very similar to those in the observed radar rainfall fields. The Australian Bureau of Meteorology uses STEPS to generate ensembles of forecast rainfall ensembles in real-time from its extensive weather radar network. </p> </div><div> <p>In this study, results of a large probabilistic verification exercise to a new version of STEPS (hereafter named STEPS-3) are reported. An extensive dataset of more than 47000 individual 5-minute radar rainfall fields (the equivalent of more than 163 days of rain) from ten weather radars across Australia (covering tropical to mid-latitude regions) were used to generate (and verify) 96-member rainfall ensembles nowcasts with up to a 90-minute lead time. STEPS-3 was found to be more than 15-times faster in delivering results compared with previous version of STEPS and an open-source algorithm called pySTEPS. Interestingly, significant variations were observed in the quality of predictions and verification results from one radar to other, from one event to other, depending on the characteristics and location of the radar, nature of the rainfall event, accumulation threshold and lead time. For example, CRPS and RMSE of ensembles of 5-min rainfall forecasts for radars located in mid-latitude regions are better (lower) than those ones from radars located in tropical areas for all lead-times. Also, rainfall fields from S-band radars seem to produce rainfall forecasts able to successfully identify extreme rainfall events for lead times up to 10 minutes longer than those produced using C-band radar datasets for the same rain rate thresholds. Some details of the new STEPS-3 version, case studies and examples of the verification results will be presented. </p> </div>


2015 ◽  
Vol 143 (5) ◽  
pp. 1833-1848 ◽  
Author(s):  
Hui-Ling Chang ◽  
Shu-Chih Yang ◽  
Huiling Yuan ◽  
Pay-Liam Lin ◽  
Yu-Chieng Liou

Abstract Measurement of the usefulness of numerical weather prediction considers not only the forecast quality but also the possible economic value (EV) in the daily decision-making process of users. Discrimination ability of an ensemble prediction system (EPS) can be assessed by the relative operating characteristic (ROC), which is closely related to the EV provided by the same forecast system. Focusing on short-range probabilistic quantitative precipitation forecasts (PQPFs) for typhoons, this study demonstrates the consistent and strongly related characteristics of ROC and EV based on the Local Analysis and Prediction System (LAPS) EPS operated at the Central Weather Bureau in Taiwan. Sensitivity experiments including the effect of terrain, calibration, and forecast uncertainties on ROC and EV show that the potential EV provided by a forecast system is mainly determined by the discrimination ability of the same system. The ROC and maximum EV (EVmax) of an EPS are insensitive to calibration, but the optimal probability threshold to achieve the EVmax becomes more reliable after calibration. In addition, the LAPS ensemble probabilistic forecasts outperform deterministic forecasts in respect to both ROC and EV, and such an advantage grows with increasing precipitation intensity. Also, even without explicitly knowing the cost–loss ratio, one can still optimize decision-making and obtain the EVmax by using ensemble probabilistic forecasts.


2018 ◽  
Vol 33 (4) ◽  
pp. 901-908
Author(s):  
Laure Raynaud ◽  
Benoît Touzé ◽  
Philippe Arbogast

Abstract The extreme forecast index (EFI) and shift of tails (SOT) are commonly used to compare an ensemble forecast to a reference model climatology, in order to measure the severity of the current weather forecast. In this study, the feasibility and the relevance of EFI and SOT computations are examined within the convection-permitting Application of Research to Operations at Mesoscale (AROME-France) ensemble prediction system (EPS). First, different climate configurations are proposed and discussed, in order to overcome the small size of the ensemble and the short climate sampling length. Subjective and objective evaluations of EFI and SOT for wind gusts and precipitation forecasts are then presented. It is shown that these indices can provide relevant early warnings and, based on a trade-off between hits and false alarms, optimal EFI thresholds can be determined for decision-making.


2021 ◽  
Vol 893 (1) ◽  
pp. 012027
Author(s):  
H N Rahmadini ◽  
U Efendi ◽  
A Rifani ◽  
A Kristianto

Abstract Convective clouds can be related to the development of intense storms that produce various extreme weather. The development of extreme weather could involve strong nonlinear interactions of many factors in the atmosphere, hence the ability to forecast extreme weather especially heavy rainfall and issued an early warning, becomes very important. BMKG has developed a time-lagged ensemble prediction system by utilizing the initial time difference, which is considered capable of providing data updates more closely to the forecasts final results. This study examines the percentile classification in the ensemble prediction system, to look for an extreme values distribution, then used it as extreme threshold. The extreme threshold was tested in a heavy rain case on February 15th 2019, on D-7, D-3, and D-1 of early warning dissemination. Based on this research, it was found that the use of the 90th and 95th percentile classification method was able to show a signal of extreme events on D-7 and D-3 events with a consistent probability pattern. In the D-1 prediction period, the probability value increases and the average precipitation value exceeds the extreme threshold.


2012 ◽  
Vol 4 (1) ◽  
pp. 65
Author(s):  
Xiao Yu-Hua ◽  
He Guang-Bi ◽  
Chen Jing ◽  
Deng Guo

2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


Sign in / Sign up

Export Citation Format

Share Document