scholarly journals Early warning of heavy rainfall event using time-lagged ensemble prediction system (case study February 15th 2019)

2021 ◽  
Vol 893 (1) ◽  
pp. 012027
Author(s):  
H N Rahmadini ◽  
U Efendi ◽  
A Rifani ◽  
A Kristianto

Abstract Convective clouds can be related to the development of intense storms that produce various extreme weather. The development of extreme weather could involve strong nonlinear interactions of many factors in the atmosphere, hence the ability to forecast extreme weather especially heavy rainfall and issued an early warning, becomes very important. BMKG has developed a time-lagged ensemble prediction system by utilizing the initial time difference, which is considered capable of providing data updates more closely to the forecasts final results. This study examines the percentile classification in the ensemble prediction system, to look for an extreme values distribution, then used it as extreme threshold. The extreme threshold was tested in a heavy rain case on February 15th 2019, on D-7, D-3, and D-1 of early warning dissemination. Based on this research, it was found that the use of the 90th and 95th percentile classification method was able to show a signal of extreme events on D-7 and D-3 events with a consistent probability pattern. In the D-1 prediction period, the probability value increases and the average precipitation value exceeds the extreme threshold.

Author(s):  
Abdullah Ali ◽  
S. Supriatna ◽  
Umi Sa'adah

Nowcasting, or the short-term forecasting of precipitation, is urgently needed to support the mitigation circle in hydrometeorological disasters. Pangkalan Bun weather radar is single-polarization radar with a 200 km maximum range and which runs 10 elevation angles in 10 minutes with a 250 meters spatial resolution. There is no terrain blocking around the covered area. The Short-Term Ensemble Prediction System (STEPS) is one of many algorithms that is used to generate precipitation nowcasting, and is already in operational use. STEPS has the advantage of producing ensemble nowcasts, by which nowcast uncertainties can be statistically quantified. This research aims to apply STEPS to generate stochastic nowcasting in Pangkalan Bun weather radar and to analyze its advantages and weaknesses. Accuracy is measured by counting the possibility of detection and false alarms under the 5 dBZ threshold and plotting them in a relative operating characteristic (ROC) curve. The observed frequency and forecast probability is represented by a reliability diagram to evaluate nowcast reliability and sharpness. Qualitative analysis of the results showed that the STEPS ensemble produces smoothed reflectivity fields that cannot capture extreme values in an observed quasi-linear convective system (QLCS), but that the algorithm achieves good accuracy under the threshold used, up to 40 minutes lead time. The ROC shows a curved upper left-hand corner, and the reliability diagram is an almost perfect nowcast diagonal line.


2013 ◽  
Vol 141 (5) ◽  
pp. 1506-1526 ◽  
Author(s):  
Christophe Lavaysse ◽  
Marco Carrera ◽  
Stéphane Bélair ◽  
Normand Gagnon ◽  
Ronald Frenette ◽  
...  

Abstract The aim of this study is to assess the impact of uncertainties in surface parameter and initial conditions on numerical prediction with the Canadian Regional Ensemble Prediction System (REPS). As part of this study, the Canadian version of the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme has been coupled to Environment Canada’s numerical weather prediction model within the REPS. For 20 summer periods in 2009, stochastic perturbations of surface parameters have been generated in several experiments. Each experiment corresponds to 20 simulations differing by the perturbations at the initial time of one or several surface parameters or prognostic variables. The sensitivity to these perturbations is quantified especially for 2-m temperature, 10-m wind speed, cloud fraction, and precipitation up to 48-h lead time. Spatial variability of these sensitivities over the North American continent shows that soil moisture, albedo, leaf area index, and SST have the largest impacts on the screen-level variables. The temporal evolution of these sensitivities appears to be closely linked to the diurnal cycle of the boundary layer. The surface perturbations are shown to increase the ensemble spread of the REPS for all screen-level variables especially for 2-m temperature and 10-m wind speed during daytime. A preliminary study of the impact on the ensemble forecast has shown that the inclusion of the surface perturbations tends to significantly increase the 2-m temperature and 10-m wind speed skill.


2012 ◽  
Vol 140 (5) ◽  
pp. 1496-1516 ◽  
Author(s):  
Hui-Ling Chang ◽  
Huiling Yuan ◽  
Pay-Liam Lin

This study pioneers the development of short-range (0–12 h) probabilistic quantitative precipitation forecasts (PQPFs) in Taiwan and aims to produce the PQPFs from time-lagged multimodel ensembles using the Local Analysis and Prediction System (LAPS). By doing so, the critical uncertainties in prediction processes can be captured and conveyed to the users. Since LAPS adopts diabatic data assimilation, it is utilized to mitigate the “spinup” problem and produce more accurate precipitation forecasts during the early prediction stage (0–6 h). The LAPS ensemble prediction system (EPS) has a good spread–skill relationship and good discriminating ability. Therefore, though it is obviously wet biased, the forecast biases can be corrected to improve the skill of PQPFs through a linear regression (LR) calibration procedure. Sensitivity experiments for two important factors affecting calibration results are also conducted: the experiments on different training samples and the experiments on the accuracy of observation data. The first point reveals that the calibration results vary with training samples. Based on the statistical viewpoint, there should be enough samples for an effective calibration. Nevertheless, adopting more training samples does not necessarily produce better calibration results. It is essential to adopt training samples with similar forecast biases as validation samples to achieve better calibration results. The second factor indicates that as a result of the inconsistency of observation data accuracy in the sea and land areas, only separate calibration for these two areas can ensure better calibration results of the PQPFs.


2012 ◽  
Vol 4 (1) ◽  
pp. 65
Author(s):  
Xiao Yu-Hua ◽  
He Guang-Bi ◽  
Chen Jing ◽  
Deng Guo

2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


Sign in / Sign up

Export Citation Format

Share Document