scholarly journals Robotic Techniques Used for Increasing Improvement Rate In The Rehabilitation Process Of Upper Limb Stroke Patients

2019 ◽  
Vol 3 (1) ◽  
pp. 44-50
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2146
Author(s):  
Manuel Andrés Vélez-Guerrero ◽  
Mauro Callejas-Cuervo ◽  
Stefano Mazzoleni

Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI. The period under investigation spanned from 2016 to 2020, resulting in 30 articles that met the criteria. The literature showed the use of artificial neural networks (40%), adaptive algorithms (20%), and other mixed AI techniques (40%). Additionally, it was found that in only 16% of the articles, developments focused on neuromotor rehabilitation. The main trend in the research is the development of wearable robotic exoskeletons (53%) and the fusion of data collected from multiple sensors that enrich the training of intelligent algorithms. There is a latent need to develop more reliable systems through clinical validation and improvement of technical characteristics, such as weight/dimensions of devices, in order to have positive impacts on the rehabilitation process and improve the interactions among patients, teams of health professionals, and technology.


2020 ◽  
pp. 1-11
Author(s):  
Gloria Perini ◽  
Rita Bertoni ◽  
Rune Thorsen ◽  
Ilaria Carpinella ◽  
Tiziana Lencioni ◽  
...  

BACKGROUND: Functional recovery of the plegic upper limb in post-stroke patients may be enhanced by sequentially applying a myoelectrically controlled FES (MeCFES), which allows the patient to voluntarily control the muscle contraction during a functional movement and robotic therapy which allows many repetitions of movements. OBJECTIVE: Evaluate the efficacy of MeCFES followed by robotic therapy compared to standard care arm rehabilitation for post-stroke patients. METHODS: Eighteen stroke subjects (onset ⩾ 3 months, age 60.1 ± 15.5) were recruited and randomized to receive an experimental combination of MeCFES during task-oriented reaching followed by robot therapy (MRG) or same intensity conventional rehabilitation care (CG) aimed at the recovery of the upper limb (20 sessions/45 minutes). Change was evaluated through Fugl-Meyer upperextremity (FMA-UE), Reaching Performance Scale and Box and Block Test. RESULTS: The experimental treatment resulted in higher improvement on the FMA-UE compared with CG (P= 0.04), with a 10 point increase following intervention. Effect sizes were moderate in favor of the MRG group on FMA-UE, FMA-UE proximal and RPS (0.37–0.56). CONCLUSIONS: Preliminary findings indicate that a combination of MeCFES and robotic treatment may be more effective than standard care for recovery of the plegic arm in persons > 3 months after stroke. The mix of motor learning techniques may be important for successful rehabilitation of arm function.


Author(s):  
Cristina Russo ◽  
Laura Veronelli ◽  
Carlotta Casati ◽  
Alessia Monti ◽  
Laura Perucca ◽  
...  

AbstractMotor learning interacts with and shapes experience-dependent cerebral plasticity. In stroke patients with paresis of the upper limb, motor recovery was proposed to reflect a process of re-learning the lost/impaired skill, which interacts with rehabilitation. However, to what extent stroke patients with hemiparesis may retain the ability of learning with their affected limb remains an unsolved issue, that was addressed by this study. Nineteen patients, with a cerebrovascular lesion affecting the right or the left hemisphere, underwent an explicit motor learning task (finger tapping task, FTT), which was performed with the paretic hand. Eighteen age-matched healthy participants served as controls. Motor performance was assessed during the learning phase (i.e., online learning), as well as immediately at the end of practice, and after 90 min and 24 h (i.e., retention). Results show that overall, as compared to the control group, stroke patients, regardless of the side (left/right) of the hemispheric lesion, do not show a reliable practice-dependent improvement; consequently, no retention could be detected in the long-term (after 90 min and 24 h). The motor learning impairment was associated with subcortical damage, predominantly affecting the basal ganglia; conversely, it was not associated with age, time elapsed from stroke, severity of upper-limb motor and sensory deficits, and the general neurological condition. This evidence expands our understanding regarding the potential of post-stroke motor recovery through motor practice, suggesting a potential key role of basal ganglia, not only in implicit motor learning as previously pointed out, but also in explicit finger tapping motor tasks.


2016 ◽  
Vol 16 (02) ◽  
pp. 1650008 ◽  
Author(s):  
PIN-CHENG KUNG ◽  
CHOU-CHING K. LIN ◽  
SHU-MIN CHEN ◽  
MING-SHAUNG JU

Spastic hypertonia causes loss of range of motion (ROM) and contractures in patients with post-stroke hemiparesis. The pronation/supination of the forearm is an essential functional movement in daily activities. We developed a special module for a shoulder-elbow rehabilitation robot for the reduction and biomechanical assessment of pronator/supinator hypertonia of the forearm. The module consisted of a rotational drum driven by an AC servo motor and equipped with an encoder and a custom-made torque sensor. By properly switching the control algorithm between position control and torque control, a hybrid controller able to mimic a therapist’s manual stretching movements was designed. Nine stroke patients were recruited to validate the functions of the module. The results showed that the affected forearms had significant increases in the ROM after five cycles of stretching. Both the passive ROM and the average stiffness were highly correlated to the spasticity of the forearm flexor muscles as measured using the Modified Ashworth Scale (MAS). With the custom-made module and controller, this upper-limb rehabilitation robot may be able to aid physical therapists to reduce hypertonia and quantify biomechanical properties of the muscles for forearm rotation in stroke patients.


Sign in / Sign up

Export Citation Format

Share Document