scholarly journals High-Resolution Traffic Flow Prediction Model Based on Deep Learning

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhihong Yao

The traditional platoon dispersion model is based on the hypothesis of probability distribution, and the time resolution of the existing traffic flow prediction model is too big to be applied to the adaptive signal timing optimization. Based on the view of the platoon dispersion model, the relationship between vehicle arrival at downstream intersection and vehicle departure from the upstream intersection was analyzed. Then, the high-resolution traffic flow prediction model based on deep learning was proposed. The departure flow rate at the upstream was taking as the input and the arrival flow rate at downstream intersection was taking as the output in this model. Finally, the parameters of the proposed model were trained by the field survey data, and this model was implemented to predict the arrival flow rate of the downstream intersection. The result shows that the proposed model can better reflect the fluctuant characteristics of traffic flow and reduced the sum of the squared errors (SSE), MSE, and MAE by 13.17%, 13.21%, and 14.24%, compared with Robertson’s model. Thus, the proposed model can be applied for real-time adaptive signal timing optimization.

2021 ◽  
Author(s):  
W.-Z. Xiong ◽  
X.-M. Shen ◽  
H.-J. Li ◽  
Z. Shen

Abstract Real-time prediction of traffic flow values in a short period of time is an importantelement in building a traffic management system. The uncertainty, complexity andnonlinearity of traffic flow data make it difficult to predict traffic flow in real time,and the accurate traffic flow prediction has been an urgent problem in the industry.Based on the research of scholars, a traffic flow prediction model based on thecorrelation vector machine method is constructed. The prediction accuracy of thecorrelation vector machine is better than that of the logistic regression and supportvector machine methods, and the correlation vector machine method has the functionof generating prediction error range for the actual traffic sequence data. Theprediction results are very satisfactory, and the prediction speed is significantlyfaster than the other two models, which meets the requirement of real-time trafficflow prediction and is suitable for real-time online prediction, and the predictionaccuracy of the used method is relatively high. The three-way comparison analysisshows that the traffic flow prediction by the correlation vector machine methodcan describe the nonlinear characteristics of traffic flow change more accurately,and the model performance and real-time performance are better. The case studyshows that the traffic flow prediction model based on the correlation vector machinecan improve the speed and accuracy of prediction, which is very suitablefor traffic flow prediction estimation with real-time requirements, and provides ascientific method for real-time traffic flow measurement.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xianglong Luo ◽  
Danyang Li ◽  
Yu Yang ◽  
Shengrui Zhang

The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fengkai Liu ◽  
Xingmin Ma ◽  
Xingshuo An ◽  
Guangnan Liang

Urban traffic flow prediction has always been an important realm for smart city build-up. With the development of edge computing technology in recent years, the network edge nodes of smart cities are able to collect and process various types of urban traffic data in real time, which leads to the possibility of deploying intelligent traffic prediction technology with real-time analysis and timely feedback on the edge. In view of the strong nonlinear characteristics of urban traffic flow, multiple dynamic and static influencing factors involved, and increasing difficulty of short-term traffic flow prediction in a metropolitan area, this paper proposes an urban traffic flow prediction model based on chaotic particle swarm optimization algorithm-smooth support vector machine (CPSO/SSVM). The prediction model has built a new second-order smooth function to achieve better approximation and regression effects and has further improved the computational efficiency of the smooth support vector machine algorithm through chaotic particle swarm optimization. Simulation experiment results show that this model can accurately predict urban traffic flow.


Sign in / Sign up

Export Citation Format

Share Document