Machine-Learning-Enabled Automatic Sonic Shear Processing

Author(s):  
Lin Liang ◽  
◽  
Ting Lei ◽  

Flexural-dipole sonic logging has been widely used as the primary method to measure formation shear slowness because it can be applied in both fast and slow formations and can resolve azimuthal anisotropy. The flexural-dipole waveforms are dispersive borehole-guided waves that are sensitive to borehole geometry, mud, and formation properties, and therefore the processing techniques need to honor the physical dispersive signatures to obtain an accurate estimation of shear slowness. Traditional processing techniques are based on either a model-dependent method, in which an isotropic model is used as a reference to compensate for the dispersion effect, or a model-independent method, which optimizes nonphysical parameters to fit a simplified model to the field dispersion data extracted in the slowness-frequency domain. Many methods often require inputs, such as mud slowness, frequency bandpass filter, or an initial guess of formation shear. Consequently, these methods often fail to interpret the dispersion signature properly when those inputs are inaccurate or when the waveform quality is poor due to downhole logging noises. The users must manually tune the processing parameters and/or choose different methods as a workaround, which causes extra time and effort to obtain the result, hence imposes a significant challenge for automating sonic shear processing. We developed a physics-driven, machine-learning-based method for enhancing the interpretation of borehole sonic dipole data for wireline logging in an openhole scenario. A synthetic database is generated from an anisotropic root-finding, mode-search routine and used to train a neural network model as an accurate and efficient proxy. This neural network model can be used for real-time sensitivity analysis and performing inversion to the measured sonic dipole dispersion data to estimate relevant model parameters with associated uncertainties. We introduce how this trained model can be used to enhance the labeling and extraction of the dipole dispersion mode. We developed a new method that outperforms previous model-dependent and model-independent approaches because the new method introduces a mechanism to constrain the solution with physics that also has the capability to incorporate more complicated physical dispersion signatures. This new method does not rely on a good initial guess on mud slowness and formation shear slowness, nor any tuning parameter. This leads to significant progress toward fully automated sonic interpretation. The algorithm has been tested on field data for challenging borehole and geological conditions.

2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2021 ◽  
Vol 72 (1) ◽  
pp. 11-20
Author(s):  
Mingtao He ◽  
Wenying Li ◽  
Brian K. Via ◽  
Yaoqi Zhang

Abstract Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can better capture trends and provide more accurate predictions than machine learning models. The artificial neural network model is the most competitive, followed by the recurrent neural network model.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 890 ◽  
Author(s):  
Zhihao Zhang ◽  
Zhe Wu ◽  
David Rincon ◽  
Panagiotis Christofides

Machine learning has attracted extensive interest in the process engineering field, due to the capability of modeling complex nonlinear process behavior. This work presents a method for combining neural network models with first-principles models in real-time optimization (RTO) and model predictive control (MPC) and demonstrates the application to two chemical process examples. First, the proposed methodology that integrates a neural network model and a first-principles model in the optimization problems of RTO and MPC is discussed. Then, two chemical process examples are presented. In the first example, a continuous stirred tank reactor (CSTR) with a reversible exothermic reaction is studied. A feed-forward neural network model is used to approximate the nonlinear reaction rate and is combined with a first-principles model in RTO and MPC. An RTO is designed to find the optimal reactor operating condition balancing energy cost and reactant conversion, and an MPC is designed to drive the process to the optimal operating condition. A variation in energy price is introduced to demonstrate that the developed RTO scheme is able to minimize operation cost and yields a closed-loop performance that is very close to the one attained by RTO/MPC using the first-principles model. In the second example, a distillation column is used to demonstrate an industrial application of the use of machine learning to model nonlinearities in RTO. A feed-forward neural network is first built to obtain the phase equilibrium properties and then combined with a first-principles model in RTO, which is designed to maximize the operation profit and calculate optimal set-points for the controllers. A variation in feed concentration is introduced to demonstrate that the developed RTO scheme can increase operation profit for all considered conditions.


2018 ◽  
Author(s):  
Alan Rozet ◽  
Ian M Kronish ◽  
Joseph E Schwartz ◽  
Karina W Davidson

BACKGROUND Investigations into person-specific predictors of stress have typically taken either a population-level nomothetic approach or an individualized ideographic approach. Nomothetic approaches can quickly identify predictors but can be hindered by the heterogeneity of these predictors across individuals and time. Ideographic approaches may result in more predictive models at the individual level but require a longer period of data collection to identify robust predictors. OBJECTIVE Our objectives were to compare predictors of stress identified through nomothetic and ideographic models and to assess whether sequentially combining nomothetic and ideographic models could yield more accurate and actionable predictions of stress than relying on either model. At the same time, we sought to maintain the interpretability necessary to retrieve individual predictors of stress despite using nomothetic models. METHODS Data collected in a 1-year observational study of 79 participants performing low levels of exercise were used. Physical activity was continuously and objectively monitored by actigraphy. Perceived stress was recorded by participants via daily ecological momentary assessments on a mobile app. Environmental variables including daylight time, temperature, and precipitation were retrieved from the public archives. Using these environmental, actigraphy, and mobile assessment data, we built machine learning models to predict individual stress ratings using linear, decision tree, and neural network techniques employing nomothetic and ideographic approaches. The accuracy of the approaches for predicting individual stress ratings was compared based on classification errors. RESULTS Across the group of patients, an individual’s recent history of stress ratings was most heavily weighted in predicting a future stress rating in the nomothetic recurrent neural network model, whereas environmental factors such as temperature and daylight, as well as duration and frequency of bouts of exercise, were more heavily weighted in the ideographic models. The nomothetic recurrent neural network model was the highest performing nomothetic model and yielded 72% accuracy for an 80%/20% train/test split. Using the same 80/20 split, the ideographic models yielded 75% accuracy. However, restricting ideographic models to participants with more than 50 valid days in the training set, with the same 80/20 split, yielded 85% accuracy. CONCLUSIONS We conclude that for some applications, nomothetic models may be useful for yielding higher initial performance while still surfacing personalized predictors of stress, before switching to ideographic models upon sufficient data collection.


Sign in / Sign up

Export Citation Format

Share Document