scholarly journals Nowcasting of Lumber Futures Price with Google Trends Index Using Machine Learning and Deep Learning Models

2021 ◽  
Vol 72 (1) ◽  
pp. 11-20
Author(s):  
Mingtao He ◽  
Wenying Li ◽  
Brian K. Via ◽  
Yaoqi Zhang

Abstract Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can better capture trends and provide more accurate predictions than machine learning models. The artificial neural network model is the most competitive, followed by the recurrent neural network model.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Chayakrit Krittanawong ◽  
Kipp W Johnson ◽  
Usman Baber ◽  
Mehmet Aydar ◽  
Zhen Wang ◽  
...  

Introduction: Heart failure (HF) is a leading cause of hospitalization, morbidity and mortality. Deep learning (DL) techniques appear to show promising results in risk stratification and prognosis in several conditions in medicine. However, few methods using DL exist to help quantitatively estimate prognosis of HF. We hypothesized that deep learning (DL) techniques could prognosis of HF using simple variables. We propose application of a custom-built deep-neural-network model to identify mortality in HF patients. Methods: Custom-built deep-neural-networks were assessed using survey data from 42,147 participants from the National Health and Nutrition Examination Survey 1999-2016 (NHANES). Variables were selected using clinical judgment and stepwise backward regressions to develop prediction models. We partitioned the data into training and testing sets and repetitive experiments. We then evaluated model performance based on discrimination and calibration including the area under the receiver-operator characteristics curve (C-statistics), balanced accuracy, probability calibration with sigmoid, and the Brier score, respectively. As sensitivity analyses, we examined results limited to cases with complete clinical information available. We validated models’ performance using Mount Sinai database. Results: Of 42,147 participants with 4,060 variables, 1,491 (3.5%) had HF and HF mortality was 51.8%. In validation cohort, of 26,333 HF patients, the mortality in HF patients was 405 (1.5%). Final model using only 20 variables (age, race, gender, BMI, smoking, alcohol consumption, HTN, COPD, SBP, DBP, HR, HDL, LDL, CRP, A1C, BUN, creatinine, hemoglobin, sodium level, on statin) was tested. A state-of-the-art deep learning models achieved high accuracy for predicting mortality in HF patients with an AUC of 0.96 (95% CI: 0.95-0.99) in the first cohort and AUC of 0.93 (95% CI: 0.91-0.96) in validation cohort. Conclusions: A deep neural network model has shown to have high predictive accuracy and discriminative and calibrative power for prediction of HF mortality. Further research can delineate the clinical implications of DL in predicting HF mortality.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
H. L. Gururaj ◽  
Francesco Flammini ◽  
H. A. Chaya Kumari ◽  
G. R. Puneeth ◽  
B. R. Sunil Kumar

AbstractThe mechanism of action is an important aspect of drug development. It can help scientists in the process of drug discovery. This paper provides a machine learning model to predict the mechanism of action of a drug. The machine learning models used in this paper are Binary Relevance K Nearest Neighbors (Type A and Type B), Multi-label K-Nearest Neighbors and a custom neural network. These machine learning models are evaluated using the mean column-wise log loss. The custom neural network model had the best accuracy with a log loss of 0.01706. This neural network model is integrated into a web application using Flask framework. A user can upload a custom testing features dataset, which contains the gene expression and the cell viability levels. The web application will output the top classes of drugs, along with the scatter plots for each of the drug.


2021 ◽  
Author(s):  
Eliska Chalupova ◽  
Ondrej Vaculik ◽  
Filip Jozefov ◽  
Jakub Polacek ◽  
Tomas Majtner ◽  
...  

Background: The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most researchers in the field. Results: Here we present ENNGene - Easy Neural Network model building tool for Genomics. This tool simplifies training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network architecture is selected and fully customized by the user, from the number and types of the layers to each layer's precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribution level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, quickly reaching the state of the art while improving the performance on more than half of the proteins by including the evolutionary conservation score and tuning the network per protein. Conclusions: As the role of DL in big data analysis in the near future is indisputable, it is important to make it available for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics researchers without a background in Computational Sciences to harness the power of DL to gain better insights into and extract important information from the large amounts of data available in the field.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


2021 ◽  
Vol 16 ◽  
Author(s):  
Farida Alaaeldin Mostafa ◽  
Yasmine Mohamed Afify ◽  
Rasha Mohamed Ismail ◽  
Nagwa Lotfy Badr

Background: Protein sequence analysis helps in the prediction of protein functions. As the number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similarity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep learning did not receive much attention regarding protein analysis as it is noted that little work focused on studying the protein diseases classification. Objective: The contribution of this paper is to present a deep learning approach that classifies protein diseases based on protein descriptors. Methods: Different protein descriptors are used and decomposed into modified feature descriptors. Uniquely, we introduce using Convolutional Neural Network model to learn and classify protein diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a dataset of 1563 protein sequences classified into 3 different disease classes: Aids, Tumor suppressor, and Proto oncogene. Results: The usage of the modified feature descriptors shows a significant increase in the performance of the Convolutional Neural Network model over Support Vector Machine using different kernel functions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Recall, and Precision, respectively. Conclusion: Results show that the prediction of the proposed modified feature descriptors significantly surpasses that of Support Vector Machine model.


Sign in / Sign up

Export Citation Format

Share Document