A NEW WORKFLOW FOR JOINT INTERPRETATION OF ELECTRICAL RESISTIVITY AND NMR MEASUREMENTS TO SIMULTANEOUSLY ESTIMATE WETTABILITY AND WATER SATURATION

2019 ◽  
Author(s):  
Chelsea Newgord ◽  
Artur Posenato Garcia ◽  
Zoya Heidari
Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3385 ◽  
Author(s):  
Abdulrauf R. Adebayo ◽  
Abubakar Isah ◽  
Mohamed Mahmoud ◽  
Dhafer Al-Shehri

Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. E57-E73 ◽  
Author(s):  
Jesús M. Salazar ◽  
Carlos Torres-Verdín

Some laboratory and qualitative studies have documented the influence of water-based mud(WBM)-filtrate invasion on borehole resistivity measurements. Negligible work, however, has been devoted to studying the effects of oil-based mud(OBM)-filtrate invasion on well logs and the corresponding impact on the estimation of petrophysical properties. We quantitatively compare the effects of WBM- and OBM-filtrate invasion on borehole resistivity measurements. We simulate the process of mud-filtrate invasion into a porous and permeable rock formation assuming 1D radial distributions of fluid saturation and fluid properties while other petrophysical properties remain constant. To simulate the process of mud-filtrate invasion, we calculate a time-dependent flow rate of OBM-filtrate invasion by adapting the available formulation of the physics of WBM-filtrate invasion. This approach includes the dynamically coupled effects of mud-cake growth and multiphase filtrate invasion. Simulations are performed with a commercial adaptive-implicit compositional formulation that enables the quantification of effects caused by additional components of mud-filtrate and native fluids. The formation under analysis is 100% water saturated (base case) andis invaded with a single-component OBM. Subsequently, we perform simulations of WBM filtrate invading the same formation assuming that it is hydrocarbon bearing, and compare the results to those obtained in the presence of OBM. At the end of this process, we invoke Archie’s equation to calculate the radial distribution of electrical resistivity from the simulated radial distributions of water saturation and salt concentration and compare the effects of invasion on borehole resistivity measurements acquired in the presence of OBM and WBM. Simulations confirm that the flow rate of OBM-filtrate invasion remains controlled by the initial mud-cake permeability and formation petrophysical properties, specifically capillary pressure and relative permeability. Moreover, WBM causes radial lengths of invasion 15%–40% larger than those associated with OBM as observed on the radial distributions of electrical resistivity. It is found also that, in general, flow rates of WBM-filtrate invasion are higher than those of OBM-filtrate invasion caused by viscosity contrasts between OBM filtrate and native fluids, which slow down the process of invasion. Such a conclusion is validated by the marginal variability of array-induction resistivity measurements observed in simulations of OBM invasion compared with those of WBM invasion.


2014 ◽  
Vol 2 (4) ◽  
pp. T155-T166 ◽  
Author(s):  
Vanessa Nenna ◽  
Adam Pidlisecky ◽  
Rosemary Knight

The use of managed aquifer recharge (MAR) to supplement groundwater resources can mitigate the risks to an aquifer in overdraft. However, limited information on subsurface properties and processes that control groundwater flow may lead to low levels of recapture of infiltrated water, reducing the efficacy of MAR operations. We used long 1D electrical resistivity probes to monitor the subsurface response over one diversion season at five locations beneath an operating recharge pond in northern California. The experiment demonstrated the benefits of integrating geophysical and standard hydrologic measurements. The water table response interpreted from time-lapse electrical resistivity images was in good agreement with traditional pore-pressure transducer measurements at coincident locations. Moreover, the electrical resistivity measurements were able to identify vertical variations in water saturation that would not have appeared in pore-pressure data alone. Changes in saturation estimated from electrical resistivity models indicated large hydraulic gradients at early time and suggested the presence of highly permeable conduits and baffles between the surface and the screened interval of recovery wells. The interpreted structure of these conduits and baffles would contribute to the movement of a large amount of infiltrated water beyond the capture zone of recovery wells before pumping begins, accounting in part for the low recovery rates.


2008 ◽  
Vol 35 (10) ◽  
pp. 1047 ◽  
Author(s):  
Terenzio Zenone ◽  
Gianfranco Morelli ◽  
Maurizio Teobaldelli ◽  
Federico Fischanger ◽  
Marco Matteucci ◽  
...  

In this study, we assess the possibility of using ground penetrating radar (GPR) and electrical resistivity tomography (ERT) as indirect non-destructive techniques for root detection. Two experimental sites were investigated: a poplar plantation [mean height of plants 25.7 m, diameter at breast height (dbh) 33 cm] and a pinewood forest mainly composed of Pinus pinea L. and Pinus pinaster Ait. (mean height 17 m, dbh 29 cm). GPR measures were taken using antennas of 900 and 1500 MHz applied in square and circular grids. ERT was previously tested along 2-D lines, compared with GPR sections and direct observation of the roots, and then using a complete 3-D acquisition technique. Three-dimensional reconstructions using grids of electrodes centred and evenly spaced around the tree were used in all cases (poplar and pine), and repeated in different periods in the pine forest (April, June and September) to investigate the influence of water saturation on the results obtainable. The investigated roots systems were entirely excavated using AIR-SPADE Series 2000. In order to acquire morphological information on the root system, to be compared with the GPR and ERT, poplar and pine roots were scanned using a portable on ground scanning LIDAR. In test sections analysed around the poplar trees, GPR with a high frequency antenna proved to be able to detect roots with very small diameters and different angles, with the geometry of survey lines ruling the intensity of individual reflectors. The comparison between 3-D images of the extracted roots obtained with a laser scan data point cloud and the GPR profile proved the potential of high density 3-D GPR in mapping the entire system in unsaturated soil, with a preference for sandy and silty terrain, with problems arising when clay is predominant. Clutter produced by gravel and pebbles, mixed with the presence of roots, can also be sources of noise for the GPR signals. The work performed on the pine trees shows that the shape, distribution and volume of roots system, can be coupled to the 3-D electrical resistivity variation of the soil model map. Geophysical surveys can be a useful approach to root investigation in describing both the shape and behaviour of the roots in the subsoil.


Sign in / Sign up

Export Citation Format

Share Document